Anatomie und Co KG - WIKIPEDIA

08/01/2014 00:52
Die Anatomie (aus griechisch ἀνά aná „auf“ und τομή tomé „Schnitt“) ist ein Teilgebiet der Morphologie. Sie ist in der Medizin bzw. Humanbiologie (Anthropotomie), Zoologie (Zootomie) und Botanik (Phytotomie) die Lehre vom Aufbau der Organismen.
Anatomie des menschlichen Kopfes

Es werden Gestalt, Lage und Struktur von Körperteilen, Organen, Gewebe oder Zellen betrachtet. Die pathologische Anatomie befasst sich mit krankhaft veränderten Körperteilen. Die mikroskopische Anatomie befasst sich mit den feineren biologischen Strukturen bis zur molekularen Ebene und knüpft an die Molekularbiologie an. Die klassische Anatomie verwendet eine standardisierte Nomenklatur, die auf der lateinischen und der griechischen Sprache basiert.

Geschichte

Dieser Abschnitt bedarf einer Überarbeitung: Es fehlen viele inhaltliche Details. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung.
Mayabüste

Die ersten bis heute erhaltenen anatomischen Zeugnisse findet man in prähistorischen Höhlenmalereien. Es verwundert, dass sich diese Menschen schon mit der Trepanation von Schädeln befasst haben, da wohl weder die Höhlenmalereien noch das Öffnen der Schädel einen medizinischen Zweck verfolgten.

Konkretere und umfangreichere Beschreibungen sind erstmals aus einigen Schriften des Corpus Hippocraticum (v.a. Über die Knochenbrüche und Über die Gelenke) erhalten, wobei in der hippokratischen Medizin die menschliche Physiologie eine größere Bedeutung hatte als die Anatomie. Galen fasste im 2. Jh. n.Chr. das medizinische Wissen des Hippokrates und anderer Ärzte systematisch zusammen.

Rembrandts „Die Anatomie des Dr. Tulp“

Nachdem im Mittelalter die Anatomie keine Fortschritte machte, erschütterte Andreas Vesalius (1514 - 1564) die über Jahrhunderte kaum hinterfragten Annahmen bzw. Glaubenssätze, was viele seiner Kollegen empörte. Seine Arbeit revolutionierte die Medizin seiner Zeit und macht ihn zum Begründer der modernen Anatomie.

Die Anatomie nahm seitdem einen hohen Stellenwert in den bildenden Künsten ein, Sektionen an Menschen und Tieren (Vivisektion oder Obduktion) gehörten zur Grundausbildung der Studenten. Künstler wie Michelangelo, Raffael, Dürer und da Vinci (1452 - 1519) brachten Jahre mit dem Studium des menschlichen Körpers zu, wobei letzterer in seiner wissenschaftlichen Genauigkeit den 62 Jahre später geborenen Vesalius übertraf. Die enge Zusammenarbeit von Künstlern und Anatomen ließ medizinische Schriften von außergewöhnlich hoher Qualität entstehen.

Im Zeitalter der Aufklärung errichtete man anatomische Theater, die neben dem wissenschaftlichen Wert einen hohen Schauwert hatten.

Arbeitsgebiete

Illustration des menschlichen Skeletts von Gerard de Lairesse in Govard Bidloos Ontleding des menschlyken lichaams von 1685. Die Vanitas-Symbole Sarg und Stundenglas rechtfertigen noch das Sujet.

Makroskopische Anatomie

Hauptartikel: Johann Adam Kulmus

Die makroskopische Anatomie beschäftigt sich mit dem Aufbau des Menschen, Tieren oder Pflanzen, und zwar mit allen Dingen die man mit dem bloßen Auge sehen kann. Beachtet hierbei werden nicht nur äußerlich sichtbare Strukturen, sondern insbesondere auch die Strukturen, welche nach Auf- und Auseinanderschneiden des Körpers zu beobachten sind.

Nach der Art der Herangehensweise wird die makroskopische Anatomie unterteilt:

  • Die Beschreibende oder deskriptive Anatomie ist die wohl antiquierteste Art der Vermittlung der Anatomie. Bei ihr werden die einzelnen Strukturen des Körpers lediglich hinsichtlich ihrer äußerlichen Erscheinung vermittelt. Funktionelle, topografische und systematische Aspekte werden nicht berücksichtigt. Bei allen Nachteilen hat aber auch die modern vermittelte Anatomie immer einen deskriptiven Anteil, denn ein Arzt muss in der Lage sein, krankhafte Veränderungen an einem Organ zu erkennen.
  • Die Systematische Anatomie gruppiert die einzelnen Strukturen des Körpers zu funktionell-zusammenhängenden Organsystemen. Dies ermöglicht zwar eine gewisse Kategorisierung und erleichtert das Erlernen, hat aber auch Nachteile. Topografische Aspekte, wie sie der Arzt/Tierarzt im klinischen Alltag bewältigen muss, bleiben unberücksichtigt. Zudem sind alle Organsysteme auch wieder untereinander verknüpft, die Haut besitzt z. B. Blutgefäße, Nerven, Zellen der Immunabwehr etc.
  • Die Topographische Anatomie beschreibt die einzelnen Strukturen des Körpers nach ihren räumlichen Lagebeziehungen zueinander (topos: griech. „Ort“). Der große Vorteil liegt sicherlich darin, dass der Arzt/Tierarzt ein sehr anwendungsorientiertes Wissen erwirbt. So ist es z. B. für einen Handchirurgen nicht ausschließlich wichtig, zu welchem größeren Organsystem eine Struktur gehört, er muss besonders wissen, wo Nerven, Blutgefäße bzw. Sehnen genau verlaufen. Auch für die Anwendung bildgebender Verfahren sind topografisch-anatomische Kenntnisse von großer Bedeutung. Die Topographische Anatomie bedient sich standardisierter Lage- und Richtungsbezeichnungen, die von der aktuellen Körperposition unabhängig sind und stattdessen relative Bezugspunkte verwendet. Funktionelle Zusammenhänge können nicht nur aus strukturellen und insbesondere topographischen Eigentümlichkeiten des Aufbaus von körperlicher Gestalt und Organen, sondern insbesondere auch aus der somatotopischen Struktur des Nervengewebes erschlossen werden.[1]

 

  • Die vergleichende Anatomie untersucht den Körperbau verschiedener Tierarten. Bereits die klassische biologische Systematik beruhte auf baulichen Gemeinsamkeiten und Unterschieden für die Einteilung von den Reichen bis zu den Arten, zunehmend werden aber auch genetische Differenzen in die Klassifikation einbezogen. Mit der Gegenüberstellung und dem Vergleich verschiedener Tierarten lassen sich manchmal Beobachtungen an einer Tierart überhaupt erst deuten. Darüber hinaus bietet dieser Vergleich die Möglichkeit, bestimmte bauliche Grundprinzipien zu erkennen und damit die Basis für eine gemeinsame Benennung zu schaffen. Der Mediziner, Anatom und Physiologe Hermann Friedrich Stannius (1808-1883) aus Rostock führte den Begriff Zootomie ein, welcher sich fast gänzlich mit dem Begriff der vergleichenden Anatomie deckt.

Mikroskopische Anatomie

Für die Untersuchung anatomischer Strukturen unterhalb des mit bloßem Auge sichtbaren Bereichs ist die Mikroskopische Anatomie (Histologie) zuständig. Sie beschreibt den Feinbau von Organen, Geweben und Zellen.

Embryologie

Die Embryologie beschreibt die Entstehung der anatomischen Strukturen während der Embryonalentwicklung. Anhand der Entstehungsgeschichte lassen sich vielfältige topografische und funktionelle Beziehungen erkennen. Auch für das Verständnis der Entstehung von Fehlbildungen sind embryologische Kenntnisse unverzichtbar.

Aufgaben in der medizinischen Ausbildung

Tafel am Hörsaal der Anatomie in Leipzig

Ein wichtiges Gebiet der Anatomie ist die Bereitstellung von Anschauungsmaterialien zur Arztausbildung. Dies geschieht in Präparierkursen und -übungen, Vorlesungsveranstaltungen, anatomischen Sammlungen, anatomischen Museen, vergleichenden anatomischen Sammlungen oder anatomischen Lehrsammlungen.

Entsprechendes gilt für die Erstellung anatomischer Lehrbücher und Atlanten, in denen auch heute noch feine Zeichnungen (Strichzeichnungen) ihre didaktische Bedeutung haben.

Einzelnachweise

  1. Hochspringen Alfred Benninghoff u. a.: Lehrbuch der Anatomie des Menschen. Dargestellt unter Bevorzugung funktioneller Zusammenhänge. 3. Band: Nervensystem, Haut und Sinnesorgane. Urban und Schwarzenberg, München 1964, Seite 112-297

Literatur (Auswahl)

  • Gerhard Baader: Zur Anatomie in Paris im 13. und 14. Jahrhundert. Medizinhistorisches Journal 3 (1968), S. 40-53.
  • Leonardo da Vinci: Anatomische Zeichnungen. Aus der königlichen Bibliothek auf Schloss Windsor. Hamburger Kunsthalle 1979.
  • J. M. Bourgery, N. H. Jacob: Atlas of Human Anatomy and Surgery. The complete colored Plates of 1831–1854. Jean-Marie Le Minor, Henri Sick: Atlas der Anatomie und Chirurgie von J. M. Bourgery und N. H. Jacob. Ein Monumentalwerk des 19. Jahrhunderts. Dreisprachig (f/e/d), Faksimile-Reprint 726 handkolorierte Lithografien, Großformat. Taschen, Köln 2005, ISBN 978-2-286-01268-7.
  • Ernst Seidl, Philipp Aumann: KörperWissen. Erkenntnis zwischen Eros und Ekel, Tübingen: MUT, 2009, ISBN 978-3-9812736-1-8.
  • Ralf Vollmuth: Das anatomische Zeitalter. Verlag Neuer Merkur, München 2004, ISBN 3-929360-70-5.
  • Hermann Stannius: Handbuch der Anatomie der Wirbelthiere Band 1. Veit, 1854.
  • Carl von Siebold und Hermann Stannius: Handbuch der Zootomie, Bdd 2 Veit, 1854.

Zelle (Biologie)

Wechseln zu: Navigation, Suche
Beispiel für einen eukaryotischen Einzeller: Paramecium aurelia

Eine Zelle (lateinisch cellula‚ kleine Kammer, Zelle‘ altgriechisch κύττος kytos ‚Zelle‘) ist die kleinste lebende Einheit aller Organismen. Man unterscheidet Einzeller, die aus einer einzigen Zelle bestehen, und Mehrzeller, die aus mehreren Zellen bestehen. Bei Vielzellern können mehrere Zellen zu einer funktionellen Einheit verbunden sein und dadurch Gewebe bilden. Der menschliche Körper besteht aus mehreren hundert verschiedenen Zell- und Gewebetypen. Evolutionsbiologisch betrachtet und im Vergleich zu Einzellern haben diese Zellen größtenteils ihre Fähigkeit, für sich allein leben zu können, verloren und haben sich für eine Arbeitsteilung in Geweben spezialisiert.

Die Wissenschaft und Lehre von den Zellen der Lebewesen ist die Zellbiologie.

Grundlagen

Jede Zelle stellt ein strukturell abgrenzbares, eigenständiges und selbsterhaltendes System dar. Sie ist in der Lage, Nährstoffe aufzunehmen und deren eigene Energie durch Stoffwechsel für sich nutzbar zu machen. Eine der wichtigsten Eigenschaften ist die Fähigkeit sich zu teilen, wodurch zwei neue Zellen entstehen. Die Zelle enthält die Informationen für all diese Funktionen bzw. Aktivitäten. Alle Zellen haben an sich grundlegende Fähigkeiten, die als Merkmale des Lebens bezeichnet werden:

  • Vermehrung durch Zellteilung (Mitose oder Meiose)
  • Stoff- und Energiewechsel (Nahrungsaufnahme, Aufbau von Zellstrukturen oder Energieumsatz)
  • Reaktion auf Reize (externe oder interne Reize, auf abiotische Faktoren wie Temperatur oder Nahrungsangebot, auf biotische Faktoren wie Fressfeinde und viele andere)
  • Möglichkeit der Bewegung (bei Bakterien zum Beispiel durch die Geißel, bei Tieren durch Muskeln, auch in der Zelle bewegen sich Proteine und Vesikel)
  • Merkmal der Strukturiertheit (morphologisch und dynamisch)
  • Wachstum und Entwicklung
  • Nekrose

Im Laufe der Evolution haben sich zwei verschiedene Gruppen von Lebewesen gebildet, die sich durch die Struktur ihrer Zellen stark unterscheiden: zum einen die Prokaryoten, die aus einfach gebauten Zellen ohne Zellkern bestehen, und zum anderen die Eukaryoten, die aus Zellen bestehen, die wesentlich komplizierter strukturiert sind und einen Zellkern besitzen. Prokaryoten und Eukaryoten können sowohl als Einzeller als auch als Mehrzeller auftreten. Bei den Mehrzellern bilden Zellen sogenannte Zweckverbände. Meistens teilen sie sich Funktionen und sind oft einzeln nicht mehr lebensfähig. Durch die Spezialisierung in Vielzellern sind die oben beschriebenen Fähigkeiten eingeschränkt.

Die Größe von Zellen variiert stark. Normalerweise haben sie einen Durchmesser zwischen 1 und 30 Mikrometer, die Eizelle eines Straußes wird aber sogar über 7 Zentimeter groß. Beim Menschen ist ebenfalls die Eizelle mit 110–140 Mikrometern die größte Zelle, und die einzige, die mit bloßem Auge erkennbar ist.

Die prokaryotische Zelle

Hauptartikel: Prokaryoten
Schema einer prokaryotischen Zelle (Bakterium)

Prokaryotische (altgriechisch pro = bevor, karyon = Kern) Zellen besitzen keinen echten Zellkern wie die eukaryotischen (altgriechisch eu = echt, karyon = Kern) Zellen und weisen eine einfachere innere Organisation im Vergleich zu den eukaryotischen Zellen auf. Man bezeichnet sie auch als Procyten oder Protocyten. Lebewesen mit prokaryotischen Zellen nennt man Prokaryoten. Zu ihnen gehören die Bakterien und die Archaeen. Sie treten meist als einzellige Organismen auf.

Prokaryotische Zellen kann man im Allgemeinen durch folgende Merkmale von den eukaryotischen Zellen unterscheiden:

  • Sie besitzen eine einfachere Struktur als eukaryotische Zellen, sie bilden seltener Kompartimente.
  • Die DNA liegt frei im Cytoplasma vor und ist nicht durch Histone (spezielle Proteine) stabilisiert, ist also nicht in einem echten Chromosom organisiert. Sie ist auf engem Raum angeordnet und wird als Nucleoid bezeichnet.
  • Das Genom besteht meist nur aus einem einzelnen DNA-Molekül, welches als „Bakterienchromosom“ bezeichnet wird. Oft ist dieses DNA-Molekül in sich geschlossen.
  • Die Zellhüllen sind häufig komplex aufgebaut, teilweise sogar mit zwei Membranen.
  • Die Ribosomen sind immer kleiner (Sedimentationskoeffizient 70 S) als in eukaryotischen Zellen (80 S).

Prokaryoten zeichnen sich durch ein weites Spektrum physiologischer und ökologischer Typen aus. Einige sind auch unter extremen Bedingungen lebensfähig (Temperaturbereich bis über 100 °C); oxisches oder anoxisches Milieu; saures Milieu (pH-Wert 1-4); hohe hydrostatische Drücke (1000 bar). Viele leben parasitär, symbiotisch oder saprovor, einige sind pathogen (krankheitserregend). Häufig enthalten sie Plasmide (extrachromosomale, in sich geschlossene oder lineare DNA-Elemente). Weiterhin besitzen Prokaryoten nur beschränkt die Fähigkeit, sich zu differenzieren, zum Beispiel bei der Sporenbildung (unter anderem Endosporenbildung bei Bacillus subtilis).

Die eukaryotische Zelle

Hauptartikel: Eukaryoten
Organisation einer typischen eukaryotischen Tierzelle.
1. Nucleolus
2. Zellkern (Nukleus)
3. Ribosomen
4. Vesikel
5. Raues Endoplasmatisches Reticulum (ER)
6. Golgi-Apparat
7. Mikrotubuli
8. Glattes ER
9. Mitochondrien
10. Lysosom
11. Zytoplasma
12. Mikrobodies
13. Zentriolen

Eukaryotische Zellen werden auch als Euzyten bezeichnet. Der wesentliche Unterschied zu prokaryotischen Zellen ist die Existenz eines Zellkerns mit einer Kernhülle um die in Chromosomen organisierte DNA. Die Kernhülle besteht aus zwei Membranlagen mit Zwischenraum und ist typischerweise etwa 15 nm dick. Eukaryotische Zellen sind wesentlich differenzierter. Ihre Vielzahl resultiert aus den sehr verschiedenen Funktionen, die sie zu erfüllen haben. Die Länge liegt zwischen einigen Mikrometern bis zu mehreren Zentimetern bei den Muskelzellen. Eine Sonderform nehmen die Neuronen ein. Sie reichen vom Rückenmark bis in die peripheren Extremitäten. Die mittlere Zellmasse der eukaryotischen Zellen beträgt etwa 2,5 ng.

Unterschiede von pflanzlichen, tierischen und Pilz-Zellen

Zellen von Tieren, Pflanzen und Pilzen gehören zu den eukaryotischen Zellen, aber es gibt einige Unterschiede in ihrer Struktur. Im Folgenden werden charakteristische Unterschiede tabellarisch aufgelistet.

Eigenschaft pflanzliche Zellen tierische Zellen Pilz-Zellen
Zellwand, Hauptbestandteile immer vorhanden, mit Cellulose, in Weichholz auch viel Glucomannan, oft als Galactoglucomannan immer ohne Zellwände regelmäßig vorhanden[1], mit Chitin (Zellwände können jedoch zwischen Zellen entfallen)
Plastiden immer vorhanden, meist als (grüne) Chloroplasten nie vorhanden Plastiden vorhanden, aber keine Chloroplasten
Vakuolen immer vorhanden (umgebende Membran: Tonoplast) meist nicht vorhanden (aber charakteristisch für Adipozyten) immer vorhanden[1]
energiereiches Kohlenhydrat-Speichermolekül Stärke Glykogen[2] Glykogen[2]
Interzellularraum in Geweben Mittellamelle mit Kontaktbereichen (Tüpfel), kein Kollagen Extrazelluläre Matrix, immer mit Kollagen kein Kollagen
Zellteilung (in der Regel Zellmembraneinschnürung, auch Knospung kann vorkommen) danach Bildung der Zellwand zwischen den Tochterzellen    
Stoffaustausch mit Nachbarzellen teilweise über Plasmodesmen, die aus Zellteilungen herrühren über Desmosomen oder Gap Junctions, die nach der vollständigen Zellteilung als Neubildungen entstanden sind Gap Junctions oder ähnliche Strukturen
Lysosomen können, müssen aber nicht, enthalten sein vorhanden, oft in der Rolle einer lytischen Vakuole  
Zellkern in der Interphase immer singulär vorhanden meistens vorhanden (fehlend z. B. in menschlichen Erythrozyten) meistens vorhanden, kann in Plasmodien oder Synzytien unauffindbar bzw. mehrfach vorhanden sein (Zusammenschluss mehrerer Nachbarzellen ohne dazwischenliegende Zellwände und Zellmembranen)
Pflanzliche Zelle

Besonderheiten pflanzlicher Zellen

  • Die Zellwand ist so beschaffen, dass sie der Zelle und damit dem gesamten Pflanzenkörper eine mehr oder weniger feste Form gibt. Sie ist durchlässig für Wasser, gelöste Nährstoffe und Gase. Sie besteht hauptsächlich aus Zellulose. Bei Zellen mit dicken Zellwänden, durch die dennoch Stoffe transportiert werden, gibt es in den Zellwänden Tüpfel. Das sind Öffnungen in der Zellwand, durch die benachbarte Zellen – nur durch eine dünne Membran getrennt – untereinander in Kontakt stehen und durch die der Austausch von Stoffen erleichtert wird.
  • Die Chloroplasten enthalten ein komplexes System zur Nutzung der Lichtenergie für die Photosynthese, das unter anderem Chlorophyll (ein grüner Farbstoff) enthält. Dabei wird die Energie von Licht eingefangen (absorbiert), in chemische Energie in Form von Traubenzucker (Glucose) umgewandelt und in Form von Stärke gespeichert.
  • Die Vakuolen sind Räume im Cytoplasma, die mit Zellsaft gefüllt sind. In diesem können Farbstoffe (zum Beispiel Flavone), Giftstoffe (zum Beispiel Coffein), Duftstoffe und anderes enthalten sein.
  • Der Tonoplast ist die selektivpermeable Membran, welche die Vakuole gegen das Plasma abgrenzt.

Struktur der Zelle

Jede Zelle, ob prokaryotisch oder eukaryotisch, besitzt eine Zellmembran, die die Zelle von der Umgebung abgrenzt. Durch die Zellmembran wird kontrolliert, was in die Zelle aufgenommen und was hinaustransportiert wird. Auf jeder Seite befinden sich Ionen (elektrostatisch geladene Atome oder Moleküle) unterschiedlicher Konzentration, die durch die Zellmembran getrennt gehalten werden. Dadurch wird ein Konzentrationsunterschied aufrechterhalten, welcher ein chemisches Potential nach sich zieht. Das durch die Zellmembran umschlossene Medium ist das Zytoplasma. Alle teilungsfähigen Zellen besitzen DNA, in der die Erbinformationen gespeichert sind sowie Proteine, die als Enzyme Reaktionen in der Zelle katalysieren oder Strukturen in der Zelle bilden und RNA, die vor Allem zum Aufbau der Proteine notwendig ist. Im Folgenden sind die wichtige Zellkomponenten aufgelistet und kurz beschrieben:

Zellmembran – die schützende Hülle

Hauptartikel: Zellmembran

Jede Zelle ist von einer Zellmembran oder auch Plasmamembran umschlossen. Diese Membran trennt die Zelle von der Umgebung ab und schützt sie auch. Sie besteht hauptsächlich aus einer Doppellipidschicht und verschiedenen Proteinen, die unter anderem den Austausch von Ionen oder Molekülen zwischen der Zelle und ihrer Umgebung möglich machen. Ihre Dicke beträgt etwa 4 bis 5 nm.

Zellskelett – das Gerüst der Zelle

Hauptartikel: Zytoskelett

Das Zellskelett ist eine wichtige, komplexe und trotz des eventuell irreführenden Namens eine höchst dynamische Struktur in der Zelle. Es besteht aus Proteinen, die insgesamt drei große Systeme bildenden Mikrofilamente (Aktinfilamente), die Mikrotubuli und die Intermediärfilamente.

In seiner Gesamtheit ist es verantwortlich für die Elastizität und die mechanische Stabilität der Zelle und ihrer äußeren Form, für aktive Bewegungen der Zelle als Ganzes, sowie für Bewegungen und Transporte innerhalb der Zelle. Es spielt zudem wichtige Rollen in der Zellteilung und der Rezeption von äußeren Reizen und deren Weitervermittlung in die Zelle hinein.

Die Existenz der drei Zytoskelettelemente als Grundausstattung jeder Zelle wurde in den 60er Jahren des 20. Jahrhunderts unter Einsatz der Elektronenmikroskopie und neuartigen Fixier- (Glutaraldehydfixierung) und Detektionsverfahren (Aktindekoration durch Myosinkopfgruppen) erkannt und geht auf bahnbrechende Arbeiten von Sabatini und Ishikawa zurück.[3][4]

Das genetische Material

Hauptartikel: DNA und RNA

In der Zelle existieren zwei Arten von genetischem Material: die Desoxyribonukleinsäuren (DNA) und die Ribonukleinsäuren (RNA). Für die Speicherung der Informationen über lange Zeit wird von den Organismen DNA genutzt. Die RNA wird häufig zum Transport der Information (zum Beispiel mRNA) und für enzymähnliche Reaktionen (zum Beispiel rRNA) verwendet.

Bei Prokaryoten liegt die DNA in einfacher, in sich geschlossener („circulärer“) Form vor. Diese Struktur nennt man Bakterienchromosom, obwohl sie sich von Chromosomen der eukaryotischen Zellen beträchtlich unterscheidet. In eukaryotischen Zellen ist die DNA an verschiedenen Orten verteilt: im Zellkern und in den Mitochondrien und Plastiden, Zellorganellen mit doppelter Membran. In den Mitochondrien und den Plastiden liegt die DNA wie in Prokaryoten „circulär“ vor. Die DNA im Zellkern ist linear in sogenannten Chromosomen organisiert. Die Anzahl der Chromosomen variiert von Art zu Art. Die menschliche Zelle besitzt 46 Chromosomen.

Ribosomen – Die Proteinfabriken

Hauptartikel: Ribosom

Die Ribosomen sind aus RNA und Protein bestehende Komplexe in Pro- und Eukaryoten. Sie sind für die Synthese von Proteinen aus Aminosäuren verantwortlich. Die mRNA dient als Information für Art und Reihenfolge der Aminosäuren in den Proteinen. Die Proteinbiosynthese ist sehr wichtig für alle Zellen, weshalb die Ribosomen in vielfacher Zahl in den Zellen vorliegen, zum Teil hunderte bis tausende von Ribosomen pro Zelle. Ihr Durchmesser beträgt 18 bis 20 nm.

Zentriolen

Hauptartikel: Zentriolen

Zentriolen sind zylinderförmige Strukturen im Ausmaß von etwa 170 x 500 Nanometern. Sie sind an der Bildung des MTOC (Mikrotubuli-organizing centers) beteiligt, das während der Mitose den Spindelapparat zur Trennung der Chromosomen bildet, aber auch während der Interphase zur Organisation und physikalischen Stabilisierung der Zelle beiträgt. Zentriolen kommen in den meisten tierischen Zellen und den Zellen niederer Pflanzen vor, nicht jedoch bei den höheren Pflanzen (Angiospermen).

Die Organellen

Hauptartikel: Organell

Bei mehrzelligen Organismen sind die Zellen meistens zu Geweben zusammengefasst, die auf bestimmte Funktionen spezialisiert sind. Oft bilden solche Gewebe einen Komplex, den man Organ nennt. Beim Menschen ist zum Beispiel die Lunge für den Gasaustausch von Kohlendioxid und Sauerstoff verantwortlich. Ähnliche funktionsbezogene Strukturen gibt es in kleinstem Maßstab auch innerhalb der Zelle. Solche Organellen sind in jeder eukaryotischen Zelle zu finden. Der Aufbau von pflanzlichen und tierischen Zellen unterscheidet sich teilweise durch Anzahl und Funktion mancher Organellen. Im Folgenden werden wichtige Organellen aufgeführt.

Zellkern – die Steuerzentrale der Zelle

Hauptartikel: Zellkern

Der Zellkern bildet die Steuerzentrale der eukaryotischen Zelle: er enthält die chromosomale DNA und somit die Mehrzahl der Gene. Bei Säugerzellen hat er einen Durchmesser um 6 µm. Durch die Kernhülle, eine doppelte Membran mit Zwischenraum, Gesamtdicke etwa 35 nm, wird der Kern vom Cytoplasma abgegrenzt. Sie wird von Kernporen durchbrochen, wodurch ein Austausch von Molekülen zwischen der Substanz des Kerninneren, dem sogenannten Karyoplasma, und dem Cytoplasma möglich ist. Die äußere Membran der Kernhülle steht mit dem endoplasmatischen Retikulum in Verbindung. Im Zellkern findet die Synthese der RNA (Transkription) statt. Jene RNA-Arten, die für die Proteinsynthese (Translation) benötigt werden, werden aus dem Zellkern durch die Kernporen ins Cytoplasma transportiert. Lichtmikroskopisch ist im Kern eine globuläre Struktur mit einem Durchmesser von etwa 2 bis 5 µm zu erkennen, die man Kernkörperchen oder Nukleolus nennt. Die DNA in diesem Bereich des Kerns enthält die Baupläne für die ribosomale RNA, also für die katalytische RNA der Ribosomen.

Mitochondrien – die Kraftwerke

Hauptartikel: Mitochondrium

Die Mitochondrien gehören zu den selbstvermehrenden Organellen und sind nur in Eukaryoten-Zellen enthalten, und zwar in unterschiedlicher Anzahl. Sie enthalten ein eigenes Genom, das viele, aber nicht alle der für die Mitochondrien wichtigen Gene enthält. Die anderen Gene befinden sich in den Chromosomen im Zellkern. Deshalb sind die Mitochondrien semiautonom. Mitochondrien werden als „Energiekraftwerke“ der Zelle bezeichnet. In ihnen findet die Oxidation organischer Stoffe mit molekularem Sauerstoff statt, wobei Energie freigesetzt und in Form von chemischer Energie (als ATP) gespeichert wird. Sie haben einen Durchmesser von etwa 0,5 bis 1,5 µm und sind etwa 0,8 bis 4 µm lang.

Plastiden

Plastiden existieren nur in Eukaryoten, die Photosynthese betreiben, also Pflanzen und Algen. Wie die Mitochondrien besitzen die Plastiden ihr eigenes Genom und sind wie die Mitochondrien selbstvermehrend, also auch semiautonom. Es gibt verschiedene Plastiden, die alle von dem sogenannten „Proplastiden“ abstammen. Sie sind in der Lage, sich in eine andere Plastidenform umzuwandeln. Der Chloroplast ist der am häufigsten erwähnte. Er dient der Nutzung von Licht zum Aufbau organischer Stoffe (Photosynthese) und enthält alle für die Photosynthese erforderlichen Zellbestandteile, vor allem Membransysteme mit Chlorophyll, Hilfsfarbstoffen, Elektronen- und Wasserstoffüberträgern und ATP-Synthase sowie Enzyme des Calvin-Zyklus für die CO2-Assimilation. Ein anderer Plastid ist zum Beispiel der Amyloplast, der in der Lage ist, Stärke, ein Photosynthese-Endprodukt, zu speichern.

Endoplasmatisches Retikulum und Golgi-Apparat

Diese beiden Systeme bestehen aus von Membranen begrenzten Hohlräumen und sind in den meisten Eukaryoten zu finden. Sie sind funktionell eng miteinander verknüpft. Das Endoplasmatische Retikulum (ER) ist das schnelle Transportsystem für chemische Stoffe, weiterhin wird in der Mitose die neue Kernmembran vom ER abgeschnürt. Außerdem ist es für die Translation, Proteinfaltung, posttranslationale Modifikationen von Proteinen und Proteintransport von Bedeutung. Diese Proteine werden anschließend vom Golgi-Apparat „verteilt“. Im Golgi-Apparat werden die Proteine modifiziert, sortiert und an den Bestimmungsort transportiert. Defekte Proteine werden dabei aussortiert und abgebaut.

Lysosomen und Peroxisomen – die Verdauungsorganellen der Zelle

Hauptartikel: Lysosom und Peroxisom

Lysosomen sind winzige, von einer Membran umschlossene Zellorganellen in Eukaryoten. Sie enthalten hydrolytische Enzyme und Phosphatasen. Ihre Hauptfunktion besteht darin, mittels der in ihnen enthaltenen Enzyme aufgenommene Fremdstoffe zu verdauen. Bei Pflanzen nehmen Zellsaftvakuolen die Aufgaben der Lysosomen wahr. Peroxisomen (Glyoxisomen im Speichergewebe von Pflanzensamen), auch Microbodies genannt, sind evolutionär sehr alte Zellorganellen in eukaryotischen Zellen. Sie fungieren als Entgiftungsapparate. In den Peroxisomen befinden sich ca. 60 Monooxygenasen und Oxidasen genannte Enzyme, die den oxidativen Abbau von Fettsäuren, Alkohol und anderen schädlichen Verbindungen katalysieren.

Vakuole – Speicher- und Entgiftungsorgan

Hauptartikel: Vakuole

Vakuolen sind große, von einer Membran umschlossenen Reaktionsräume vorwiegend in Pflanzen, die bis zu 90 % des Zellvolumens einnehmen können, aber zum Beispiel auch im Pantoffeltierchen (Paramecium) vorkommen können. Sie erfüllen die vielfältigsten Aufgaben, unter anderem Aufrechterhaltung des Zelldrucks (Turgor), Lager für toxische Stoffe, Farbgebung der Zelle, Verdauung von Makromolekülen und im Falle der kontraktilen Vakuole der Wasserausscheidung.

Die Entdeckungsgeschichte der Zelle

Siehe: Geschichte der Zellbiologie

Zellen als Arzneimittel

Zellen und Gewebe können auch als Arzneimittel für neuartige Therapien zur Behandlung von Krankheiten verwendet werden.

Literatur

  • May-Britt Becker, Armin Zülch, Peter Gruss: Von der undifferenzierten Zelle zum komplexen Organismus: Konzepte der Ontogenie. In: Biologie in unserer Zeit. Bd. 31, Nr. 2, 2001, ISSN 0045-205X, S. 88–97.
  • David S. Goodsell: Wie Zellen funktionieren. Wirtschaft und Produktion in der molekularen Welt. 2. Auflage. Spektrum, Akademischer Verlag, Heidelberg 2010, ISBN 978-3-8274-2453-2.
  • Friedrich Marks: Datenverarbeitung durch Proteinnetzwerke: Das Gehirn der Zelle. In: Biologie in unserer Zeit. Bd. 34, Nr. 3, 2004, S. 159–168.
  • Sabine Schmitz: Der Experimentator. Zellkultur. Elsevier, Spektrum, Akademischer Verlag, München 2007, ISBN 978-3-8274-1564-6.
  • Sven P. Thoms: Ursprung des Lebens (= Fischer 16128 Fischer-kompakt). Fischer, Frankfurt am Main 2005, ISBN 3-596-16128-2.
  • Joachim Ude, Michael Koch: Die Zelle. Atlas der Ultrastruktur. 3. Auflage. Spektrum, Akademischer Verlag, Heidelberg u. a. 2002, ISBN 3-8274-1173-4.
  • Klaus Werner Wolf, Konrad Joachim Böhm: Organisation von Mikrotubuli in der Zelle. In: Biologie in unserer Zeit. Bd. 27, Nr. 2, 1997, S. 87–95.

Siehe auch

Epithel

Wechseln zu: Navigation, Suche

Das Epithel [epiˈteːl] (gr. ἐπί epí „auf, über“ und θάλλω thállo „sprießen, reichlich vorhanden sein“) ist eine biologisch-medizinische Sammelbezeichnung für Deckgewebe und Drüsengewebe. Es handelt sich um ein- oder mehrlagige Zellschichten, die alle inneren und äußeren Körperoberflächen der vielzelligen tierischen Organismen bedecken (Ausnahme: Gelenkkapseln und Schleimbeutel des Bewegungsapparates).

Das Epithel ist neben Muskel-, Nerven- und Bindegewebe eine der vier Grundgewebearten.

Aufbau

Epithelien sind durch die Basalmembran klar vom Bindegewebe getrennt und enthalten keine Blutgefäße.

Eine weitere allen Epithelzellen gemeinsame Eigenschaft ist ihre Polarität:

  • Die äußere, apikale Seite ist dem Äußeren (z. B. bei der Haut) oder dem Lumen (z. B. beim Darm oder Drüsen) zugewandt.
  • Die basale Seite ist über eine Basallamina mit dem darunterliegenden Gewebe verbunden.

Die Polarität von Epithelzellen ist zudem durch strukturelle und funktionelle Unterschiede von apikaler und basaler Membran der Epithelzellen geprägt. Man spricht in diesem Zusammenhang auch von einer apikalen und basolateralen Domäne.

Des Weiteren besitzen Epithelzellen einen Haftkomplex (Schlussleistenkomplex) bestehend aus Zonula occludens (Tight junction), Zonula adhaerens (Adhaerens junction) und Desmosom (Macula adhaerens). Der Haftkomplex stellt zum einen eine physikochemische Barriere dar und verbindet zum anderen angrenzende Epithelzellen miteinander.

Die Zellen liegen dicht beieinander und sind reich an Zellkontakten. Demzufolge besitzt das Gewebe nur kleine Interzellularräume mit entsprechend wenig Interzellularsubstanz. Mit Hilfe der Emperipolesis durchdringen andere Zellen die Epithelien.

Einteilung der Epithelien

Epithelien sind auf vielfältige Weise und je nach Organ spezifisch differenziert. Zunächst kann man Oberflächenepithelien und Drüsenepithelien unterscheiden:

Für die Unterscheidung der zahlreichen Epitheltypen hat es sich bewährt, zwei Merkmale hervorzuheben: die Zahl der Zellschichten und die Form der Zellen in der oberflächlichen Zellschicht (siehe unten).

Einschichtige Epithelien

Einfache Epithelien

Die verschiedenen Epithelarten

Mehrreihige Epithelien

Auch das mehrreihige Epithel ist noch einschichtig, alle Zellen sind wie beim einschichtigen Epithel auf der Basallamina verankert, aber nicht alle erreichen das Lumen. Hochprismatische Zellen erfüllen die eigentliche Funktion, während kleine Basalzellen als Reserve für untergegangene Zellen bereitstehen. Die Zellkerne liegen so in unterschiedlicher Höhe und bilden dadurch scheinbare Schichten (Reihen).

Mehrschichtige Epithelien

Im mehrschichtigen Epithel liegen viele (mehr als zehn) Zellschichten übereinander. Es lässt sich grundsätzlich eine Dreiteilung vornehmen: In der basalen Schicht, die an der Basallamina verankert ist, finden Zellteilungen statt. Die Zellen steigen auf und differenzieren in einer Mittel- oder Intermediärschicht auf spezifische Weise. Schließlich erreichen sie die Oberflächen- oder Superfizialschicht.

  • mehrschichtiges Plattenepithel: Dieses Epithel ist von großer Bedeutung und findet sich überall dort, wo die mechanische Belastung groß ist. Zytoskelett und Zellkontakte sind auf diese Belastung abgestimmt. In Regionen, die ständig befeuchtet sind, bleibt das mehrschichtige Plattenepithel unverhornt, wo es der Luft ausgesetzt ist, verhornt es.
  • mehrschichtiges hochprismatisches Epithel: Diese weniger häufige Epithelform ist vom wesentlich bedeutenderen mehrreihigen hochprismatischen Epithel zu unterscheiden. Sie kommt nur an drei Stellen des menschlichen Körpers vor:
    • in der männlichen Harnröhre in ihrem Verlauf von der Prostata bis kurz vor der äußeren Mündung
    • in Hauptausführungsgängen der großen Speicheldrüsen (zweischichtig)
    • im Fornix conjunctivae, einer Reservefalte der Bindehaut
  • zweischichtiges isoprismatisches Epithel: Diese Epithelform findet sich in den Ausführungsgängen der Schweißdrüsen. Auch der Ziliarkörper ist von einem solchen Epithel bedeckt, das allerdings Teil der Netzhaut ist.
  • mehrschichtiges isoprismatisches Epithel: Ovarialfollikel, die das Stadium des Sekundärfollikels erreicht haben, besitzen ein solches Epithel.

Übergangsepithel („Urothel“)

Als Übergangsepithel („Urothel“) wird ein spezielles, je nach Blasenfüllung (respektive Dehnung des Urothels) mehrreihig bis mehrschichtiges Epithel der Harnwege (Nierenbecken, Harnleiter, Harnblase) bezeichnet. Hierbei sind besonders die Deck-/ Schirm-/ umbrella cells von großer Bedeutung. Sie bilden die sogenannte Crusta, welche die Aufgabe des Harnsäureschutzes haben. Im Gegensatz zum Plattenepithel zeigt sich die obere Zellschicht eher kubisch.

Funktionen der Epithelien

Schutzfunktion

Das Epithel erfüllt im Grunde zwei verschiedene Schutzfunktionen: Zum einen der rein mechanische Schutz vor allem durch die mehrschichtigen Epithelien. So muss die Epidermis der Haut ausreichende Reißfestigkeit besitzen und darf sich nicht vom darunterliegenden Bindegewebe ablösen. Zum anderen muss das Epithel die inneren Körperöffnungen abdichten: Magen- und Darminhalt müssen kontrolliert verwertet werden (hochprismatisches Epithel), der Urin muss in Blase und Harnleiter bleiben (Übergangsepithel), die Blut-Hirn-Schranke muss gewahrt bleiben (Kapillarendothel). Natürlich müssen auch hier mechanische Belastungen ausgehalten werden, entscheidend für die Abdichtung sind aber die Tight junctions, die in solchen Zellen vermehrt auftreten.

Resorption

Unter Resorption versteht man den Transport von genau bestimmten Stoffen von apikal nach basal. Das klassische Beispiel ist die Resorption von Nährstoffen in der Darmschleimhaut. Die apikalen Oberflächen sind häufig differenziert, so kann eine Epithelienzelle ihre Oberfläche beispielsweise durch die Ausbildung zahlreicher Mikroplicae (Einfaltungen) oder Mikrovilli vergrößern. Die genauen Mechanismen (Transport, Phagozytose, Pinozytose, Lysosomen) sind Gegenstand anderer Artikel.

Sekretion

Histologische Aufnahme der Schilddrüse eines Pferdes: Follikel mit Kolloid (1), Follikelepithelzellen (2), Endothelzellen der Kapillaren (3)

Sämtliche Sekretionsvorgänge des Körpers geschehen von den Drüsenepithelien aus. Dementsprechend gibt es hier eine große Vielfalt, von der einzelnen Becherzelle der Darmschleimhaut über die Schweißdrüsen der Haut bis hin zu ganzen Organen wie den Speicheldrüsen oder der Bauchspeicheldrüse. Drüsen sind Organe aus spezialisierten Epithelzellen; sie dienen der Sekretion. Man unterscheidet:

  • exokrine Drüsen, die ihre Sekrete durch einen Ausführungsgang an die Oberfläche bringen. Sie scheiden an inneren oder äußeren Oberflächen aus (z. B. Tränendrüse, Speicheldrüse, Schweißdrüse), und
  • endokrine Drüsen, die ihre Sekrete direkt an die umgebende Extrazellulärflüssigkeit abgeben und keinen Ausführungsgang besitzen. Häufig diffundieren die Sekrete (Hormone) anschließend in Blutgefäße und verteilen sich im ganzen Organismus (z. B. Schilddrüse, Hypophyse).

Auch den Sekretionsweg kann man unterscheiden, also

  • holokrin (Zelle zerfällt für die Sekretbildung, typisch für die Talgdrüsen der Haut),
  • apokrin (Vesikelabschnürung, z. B. laktierende Brustdrüse),
  • merokrin (durch Exozytose) und
  • ekkrin (durch Transporter),

wobei die letzten nach der Zusammensetzung des Sekrets unterteilt werden in

Außerdem unterscheidet man intraepitheliale und extraepitheliale Drüsen:

  • Intraepitheliale Drüsen sind ins Deckepithel eingebettete Einzelzellen (z. B. die schleimbildende Becherzelle des Darmes).
  • Extraepitheliale Drüsen sind vielzellige Organe, die daher im Epithel selbst keinen Platz mehr haben und in die tieferen Gewebsschichten verlagert wurden. Sie bestehen aus Drüsenendstücken, die das Sekret bilden. Man unterscheidet tubulöse (schlauchförmige), alveoläre (blasenförmige) und azinöse (blasenförmig; jedoch dickere „Wand“ und kleineres Lumen) und Mischformen von extraepithelialen Drüsen. Schaltstellen nehmen das Sekret aus den Endstücken auf und leiten es in die Streifenstücke/Sekretrohre (aus Zylinderepithel); viele Sekretrohre sammeln sich zu den Nebenausführungsgängen, die in den Hauptausführungsgang münden, der schließlich das Sekret auf eine Epitheloberfläche, z. B. die Darmschleimhaut, abgibt.

Sinnesfunktion

Ein Großteil der menschlichen Sinneszellen ist in epitheliale Zellverbände eingebettet. Diese Konstruktion bietet sich an, da Epithelien als oberflächliche Zelllagen naturgemäß eine vermittelnde Position zwischen Innen und Außen einnehmen. Beispiele:

Transportfunktion

Manche Epithelien besitzen zusätzlich Flimmerhärchen auf ihrer Oberfläche, welche eine Transportfunktion haben. Sie können mit ihrem kräftigen Schlag Fremdkörper aus dem Organismus ausschleusen.

 

Binde- und Stützgewebe

Wechseln zu: Navigation, Suche

Das Binde- und Stützgewebe ist eine der vier Grundgewebetypen des tierischen Körpers (neben Muskelgewebe, Nervengewebe und Epithel). Man zählt zu dieser Gruppe eine Reihe Gewebetypen, die sich in Form und Funktion zwar sehr unterscheiden, aber in Entwicklung und strukturellem Aufbau entscheidende Gemeinsamkeiten aufweisen. Beispiele sind lockeres und straffes kollagenes Bindegewebe, Knorpel, Knochen oder Fettgewebe.

Eigenschaften

Das Binde- und Stützgewebe zeichnet sich vor allem durch zwei Eigenschaften aus: Die fixen (ortsfesten) Zellen, genannt Fibrocyten, liegen im Zellverband nicht dicht beisammen, sondern weisen zwischen sich einen oft großen Raum auf. Dieser interstitielle Raum wiederum ist von Extrazellularmatrix (EZM, ECM, auch Interzellularsubstanz) erfüllt, die je nach Bindegewebstyp sehr unterschiedlich ausfällt: Von den Fasern des lockeren Bindegewebes bis zur mineralisierten Matrix des Knochens. Die Extrazellularmatrix bestimmt weitestgehend die Eigenschaft des Bindegewebetyps.

Außer den Fibrocyten halten sich im Bindegewebe auch zahlreiche freie (mobile) Zellen auf, genannt Histiocyten, die verschiedene Aufgaben erfüllen und größtenteils dem Abwehrsystem zuzuordnen sind.

Einteilung

Unterschiede zwischen den einzelnen Gewebsarten werden u.a. bedingt durch die Art und Menge der in der Interzellularsubstanz vorhandenen Bestandteile. Zuerst erfolgt die Unterteilung in die beiden Gruppen des Bindegewebes im engeren Sinn und in das Stützgewebe. Das Bindegewebe wird dann wiederum vor allem nach der Art der vorherrschenden Fasern bestimmt, während das Stützgewebe in Knorpel und Knochen eingeteilt ist.

Allgemeiner Aufbau

Zellen des Bindegewebes

Alle Arten des Binde- und Stützgewebes gehen aus dem Mesenchym, dem embryonalen Bindegewebe, hervor. Mesenchymzellen sind dementsprechend pluripotent und können sich in die späteren bindegewebsspezifischen Zellen differenzieren.

Bei der Nomenklatur ist es üblich, aktive, Matrix sezernierende bzw. aufbauende Zellen mit der Endung -blasten und ruhende oder inaktivierte Zellen mit -zyten zu kennzeichnen: Osteoblasten und Osteozyten des Knochens, Chondroblasten und Chondrozyten des Knorpels, Fibroblasten und Fibrozyten beim kollagenen Bindegewebe (letztere können nicht immer konsequent unterschieden werden und werden oft synonym gebraucht).

Extrazellulärmatrix

Allgemein besteht die EZM aus zwei Hauptkomponenten:

Zellen+ geformter Teil (Fasern)+ armorphe Grundsubstanz (chemische Zusammensetzung s.o.)=Intercellularsubstanz Zudem sind verschiedene Verbindungs- und Haftproteine vorhanden.

Alle diese Bestandteile sind nicht auf das Binde- und Stützgewebe beschränkt, sondern kommen auch in anderen Gewebetypen vor. Allerdings spielen sie nur hier eine für die Eigenschaften des Gewebes so entscheidende Rolle und nehmen auch nur hier einen solchen Anteil an Volumen und Masse ein. Für eine genauere Diskussion der oben genannten Beispiele sei auf den Artikel zur Extrazellularmatrix verwiesen.

Literatur

  • H.-G. Liebich: Funktionelle Histologie der Haussäugetiere. Schattauer, Stuttgart 2003 (4. Aufl.). ISBN 3-7945-2311-3
  • U. Welsch: Sobotta Lehrbuch Histologie. Urban & Fischer, München 2002. ISBN 3-437-42420-3

 

Nervengewebe

Wechseln zu: Navigation, Suche

Nervengewebe besteht aus vernetzten Nervenzellen (Neuronen). Dazwischen verbinden Gliazellen die Blutkapillaren mit den Neuronen und anderen Gliazellen. Durch diese verbundenen Nervenzellen ist Nervengewebe von anderen Gewebearten abgrenzbar. Hauptsächlich ist Nervengewebe im Gehirn, Rückenmark und peripheren Nerven zu finden, aber auch am Darm (→ Enterisches Nervensystem) und in der Netzhaut sind netzartig verbundene Nervenzellen vorhanden.

Im lebenden Organismus hat das Nervengewebe die Farbe rosa bis weiß. In der grauen Substanz überwiegen Nervenzellen. Die weiße Substanz besteht aus Leitungsbahnen, den myelinhaltigen Nervenfasern. In der weißen Substanz ist die Vernetzung gering.

Nervengewebe leitet selektiv Erregungen von Rezeptoren zu den Erfolgsorganen. Die graue Substanz verarbeitet, die weiße leitet. Das Nervengewebe ist neben Muskel-, Epithel- und Bindegewebe eine der vier Grundgewebearten.

Gliazellen und Neuronen

Nervengewebe setzt sich aus Nervenzellen (Neurone) und Gliazellen zusammen. Über die Neurone werden Impulse selektiv transportiert (Erregungsleitung). In einem gigantischen Netzwerk aus verbundenen Neuronen laufen ständig unzählige Erregungen auf vorgeprägten Bahnen mit einer Geschwindigkeit von ca. 360 km/h. Die Impulse verzweigen auf viele andere Neurone, konvergieren auf einige wenige Neurone oder hemmen andere Neurone. Die vergleichsweise kleineren und häufiger vorkommenden Gliazellen erfüllen Hilfsaufgaben. Gliazellen lassen sich strukturell und funktionell in Astrozyten, Oligodendrozyten, Schwann-Zellen, Mikroglia, Ependymzellen und Satellitenzellen gliedern. Astrozyten haben Kontaktstellen zur Blutbahn und zu näheren und entfernten Neuronen, bilden aber im Gegensatz zu den Neuronen kein globales Netz. In manchen Quellen werden die Glianetze als Synzytium und die Verbindungen mit Gap Junctions erklärt. Die Funktion der Glia ist nur teilweise verstanden. Zu Beginn der neuronatomischen Forschung hielt man Gliazellen für eine reine Kittsubstanz (Glia=Leim). Später erkannte man die Schutz- und Filterfunktion: Glia hält die für die Nervenzellen erforderliche biochemische Umgebung aufrecht, produziert für die Nervenfunktion erforderliche Substanzen, entsorgt störende Stoffwechselprodukte und bekämpft eindringende Mikroorganismen. Ein Astrozyt ernährt mit seinen Zellfortsätzen mehrere Neurone und ein Neuron wird durch mehrere Astrozyten versorgt. Ersteres schafft energetische Abhängigkeiten. Die Reserven im Astrozyt sind gering. Verbraucht ein Neuron viel, so haben die anderen versorgten Neurone weniger.

In der neueren Forschung zeigt sich, dass die Glia in noch nicht bekannter Weise die Tätigkeit der Neurone organisiert, die Neurone folgen den von Gliazellen vorgegebenen Mustern. Die Glia gibt die Befehle zur Bildung der Synapsen und legt in Wechselwirkung mit den Neuronen die Bahnen fest, auf welchen die Erregungen durchs Gehirn strömen. Wiederholt benutzte Bahnen werden verfestigt, nicht benutzte Bahnen werden gelöst. Letzteres wird „Jäten“ genannt. Neurone, welche sich nicht in benutzte Bahnen einbinden, werden über Apoptose eliminiert. Immer mehr wird deutlich, die Glia sind keine Hilfszellen, sondern organisieren die Tätigkeit der Neuronen.

Am einzelnen Neuron docken ca. 20 000 Synapsen an. Und außerdem sind zusätzlich Astrozytenkontakte anatomisch sichtbar, die PAP (peripheral astrocytic process). Viele kleine Astrozytenkontakte bilden einen Hügel an der und um die Synapse.

Regeneration

Im Alter von sechs Monaten vermeiden im menschlichen Organismus die spezialisierten Nervenzellen die Zellteilung. Während der Zellteilung wäre deren Funktion beeinträchtigt. Nervenzellen sind extrem spezialisiert. Benachbarte Zellen können bei Ausfall deren Funktion nicht übernehmen. Aber undifferenzierte Neuronen können sich weiterhin teilen, wandern in die Hirnregionen, fügen sich in das vorhandene Netzwerk ein und lernen sukzessiv. Gelingt dies nicht, werden diese Zellen eliminiert (Apoptose).

Im Peripheren Nervensystem können Nervenfasern nach einer Verletzung nachwachsen (Neurogenese).

 

Histologie

Wechseln zu: Navigation, Suche
Vorbereitung einer histologischen Untersuchung im Labor

Die Histologie (von gr. histos „Gewebe“ und logos „Lehre“), auch Gewebelehre, ist die Wissenschaft von biologischen Geweben. Die Histologie ist demnach ein Teilgebiet der Medizin oder Biologie und hier wiederum Teilgebiet der Anatomie oder Pathologie.

Der Histologe untersucht Gewebeproben. Dazu werden mikrometerdünne, gefärbte Gewebsschnitte hergestellt und am Mikroskop beurteilt. Man spricht von morphologischer Diagnostik, da anhand des Erscheinungsbildes und färberischen Verhaltens der Gewebestrukturen der Befund erstellt wird. Zum Probengut beim histologischen Arbeiten gehören Operationspräparate (z. B. Magen, Darm, Niere), Probeexzisionen (z. B. Muttermal, Sehnen, Zysten) und Biopsien (z. B. Magen-, Darm-, Brustgewebe-Biopsien). Mit Hilfe der modernen Technik lassen sich schon an winzigen Gewebestückchen (1–2 mm) feingewebliche Diagnosen erstellen. Diese mikroinvasiven Methoden sind für die Patienten schonend und werden oft bei Vorsorgeuntersuchungen durchgeführt.

Die elektronenmikroskopische Untersuchung von Gewebe fällt ebenfalls vorwiegend in den Forschungsbereich. Hier werden 0,01–0,5 µm dicke Schnitte hergestellt und mit einem hoch auflösenden Elektronenmikroskop begutachtet.

Histologischer Schnitt einer Lunge, Lungenpest

Zu den Aufgaben der Histopathologie gehört die Frühdiagnose von Tumoren (z. B. Magenbiopsie), Klassifizierung von Tumoren (gut-/bösartig), Nachweis von Stoffwechselerkrankungen, parasitären, bakteriellen, entzündlichen Erkrankungen, Hilfestellung zur Therapiewahl und vieles mehr.

Geschichte

Henri Louis Duhamel du Monceau stellte fest, dass Tierknochen sich mit dem Farbstoff Krapp aus der Färberkrappflanze (Rubia tinctorum) anfärben lassen. Schon Christian Gottfried Ehrenberg benutzte im Jahre 1838 Karmin zur Anfärbung und mikroskopischen Beobachtung von Infusorientierchen (oder auch Protisten). Dann 1849 studierten Heinrich Göppert und Ferdinand Julius Cohn mittels der Farbstoffe Krapp und Karmin die Protoplasmaströmung in Pflanzenzellen. Einer, der die histologischen Färbetechniken weiterentwickelte, war um das Jahr 1855 der Anatom Joseph von Gerlach.[1][2] Er beschreibt die Färbung von Zellkernen in tierischen Zellen mittels Karmin. Heinrich Wilhelm Waldeyer wird im Jahre 1863 mittels eines Extraktes des Blutholzbaumes (Haematoxylum campechianum) die Hämatoxylinfärbung für Nervenzellen verwenden. Ein weiterer wichtiger Schritt war der Einsatz von Anilinfarbstoffen durch Paul Ehrlich; er wird diese Möglichkeiten in den Jahren 1879 bis 1894 perfektionieren.[3]

Als Begründer der Histologie gilt Marie François Xavier Bichat (1771–1802), der ohne Mikroskop 21 Gewebetypen im menschlichen Körper beschrieb. Die Entstehung der Histopathologie schreibt man Johannes Peter Müller (1801–1858) zu, der 1838 ein Buch über die Natur und Struktureigenschaften von Krebs veröffentlichte. Als Vater der Histopathologie wird Rudolf Virchow (1821–1902) bezeichnet. Der Begriff Histologie wurde im Jahre 1819 vom Anatomen Franz Josef Carl Mayer (1787–1865)[4] umschrieben und als ein Teilgebiet der Anatomie angesehen. Im Jahre 1830 prägten Vincent Jaques Louis Chevalier (1770–1841) und sein Sohn Charles Louis Chevalier (1804–1859), deren Firma seit dem Jahre 1765 in Paris wissenschaftliche Instrumente fertigte, die Bezeichnung Mikrotom für Gewebeschnittgeräte.[5]

Histologische Technik

Hauptartikel: Histologische Technik

Bevor ein Pathologe / Biologe die feingeweblichen Details einer Patientenprobe / eines Experimentes begutachten kann, muss das Gewebe einer ausführlichen Verarbeitung unterzogen werden. Diese Methoden werden als Histotechnik zusammengefasst und im histologischen Labor größtenteils von biomedizinischen Analytikern bzw. (V)MTAs durchgeführt.

Die Gewebeverarbeitung im histodiagnostischen Labor umfasst:

  • Fixierung zur Stabilisierung des Gewebes (Hauptfixans: 4 % neutral gepufferte Formaldehydlösung)
  • makroskopische Begutachtung, Zuschnitt der aussagekräftigen Gewebebezirke. In der Pathologie ärztliche Tätigkeit und zum diagnostischen Prozess gehörend.
  • Entwässerung und Imprägnierung des Gewebes mit flüssigem Paraffin
  • Einblocken des Gewebes in Paraffin: ein Paraffinquader wird hergestellt, der das Gewebe beinhaltet.
  • In modernen Histologielaboren werden die Gewebsstückchen in sogenannte „Einbettkassetten“ gelegt. In diesen durchläuft die Gewebeprobe die Entwässerung und Einparaffinierung. Danach dient die Kassette als Blockunterlage und kann so in den sogenannten Schnellspannrahmen, mit dem die meisten heutigen Mikrotome versehen sind, eingespannt werden.
  • Herstellung von 2–5 µm dicken Schnitten am Mikrotom
  • Aufziehen der Schnitte auf (beschichtete) Glasobjektträger
  • histologische Färbetechniken

Die Verarbeitung von FFPE-Gewebe (formalin-fixiertes paraffin-eingebettetes Gewebe) inklusive der Hämatoxylin-Eosin-Färbung stellt die weltweite Routine-Methode der Pathologie dar und dauert durchschnittlich ein bis zwei Tage von der Probenannahme bis zur Befundung. Im Gegensatz zum klinisch-chemischen Labor sind viele Arbeitsschritte von Hand durchzuführen. Besonders die Schnittherstellung am Mikrotom bedarf großen Geschicks.

Schnellschnittuntersuchung

Hauptartikel: Schnellschnittuntersuchung

Bei manchen Operationen benötigt der Chirurg noch während der Operation Informationen über das entnommene Gewebe für seine weitere Vorgehensweise. In diesem Fall wird ein Teil der Probe innerhalb von etwa 10 Minuten als Schnellschnitt verarbeitet:

  • Gewebestabilisierung durch Gefrieren (etwa −20 °C), je nach Gewebeart
  • Herstellen eines 5–10 µm dicken Schnittes mit einem Kryostat-Mikrotom
  • Aufziehen des Schnittes auf einen beschichteten Glasobjektträger
  • Färben mittels Schnell-HE-Färbung, Paragon-Färbung oder einer anderen Schnellfärbung
  • Mikroskopische Befundung

Färbemethoden der Histologie

Es gibt eine Unzahl verschiedener histologischer Färbungen, die im Laufe der letzten 120 Jahre entwickelt wurden. Der Großteil stammt aus den ersten 30 Jahren des vorigen Jahrhunderts. Im modernen Histolabor hat sich eine überschaubare Anzahl an Färbungen durchgesetzt. An erster Stelle steht die Hämatoxylin-Eosin-Färbung (HE-Färbung) als Routine- und Übersichtsfärbung. Dafür werden meist computergesteuerte Färbeautomaten eingesetzt. Daneben werden für bestimmte Fragestellungen sogenannte Spezialfärbungen (meist von Hand) durchgeführt.

Die Färbetheorie der biologischen Färbungen begründet sich meist in der Reaktionsfähigkeit bestimmter Gewebestrukturen auf bestimmte Farbstoffe. Man klassifiziert die Zellstrukturen und Gewebe anhand des Färbeverhaltens durch die Farbstoffe in basophile, azidophile und neutrophile Strukturen.

Analysierte man den Färbevorgang histochemisch zeigte sich ein kompliziertes Bild physiko-chemischer Prozesse, bestehend aus physikalischen Vorgängen wie der Diffusion, Elektroadsorption und Grenzflächenadsorption, aus den oben beschrieben chemischen Vorgängen hinsichtlich Ladungsverteilungen im Farbstoffmolekül (siehe auch Lewis-Säure-Base-Konzept) und an den histologischen Strukturen.

Die Hauptbindungskraft ist die Ionenbindung (saure Farbstoffe werden an basische Proteine gebunden). Bei histochemischen Methoden entwickelt sich ein Farbstoff erst durch die Reaktion mit einem Gewebeinhaltsstoff (z. B. Berliner-Blau-Reaktion, Perjodacid-Schiffsche Reaktion). Des Weiteren gibt es noch enzymhistochemische Methoden, bei denen die Aktivität zelleigener Enzyme eine Farbentwicklung bewirkt.

Diese klassische Histotechnik wird seit den 1980er Jahren durch die Immunhistochemie ergänzt. Hier beruht der Nachweis von „Zelleigenschaften“ auf einer Antigen-Antikörper-Reaktion. In einer Mehr-Schritt-Technik wird die Reaktion durch eine Farbreaktion am Ort des Antigens (Proteins) sichtbar.

Seit den 1990er Jahren findet die In-situ-Hybridisierung Eingang in die histologische Diagnostik. Hier beruht der Nachweis bestimmter Nukleotidsequenzen auf der Aufschmelzung doppelsträngiger DNA und der spontanen Anlagerung von Einzel-Strängen (DNA oder RNA). Die Nukleinsäure-Sequenzen werden mit Hilfe von Sonden dargestellt. Sind diese Sonden mit Fluorochromen markiert, spricht man von Fluoreszenz-in-situ-Hybridisierung (FISH).

Mit diesen Methoden hat ein neuer Abschnitt der Histodiagnostik begonnen.

Histologischer Schnitt glatter Muskulatur (HE)
getrockneter Knochen, Fuchsin

Übliche Färbemethoden sind:

Siehe auch:

Gewebearten

Literatur

  • Hans-Christian Burck: Histologische Technik. Thieme-Verlag, Stuttgart, ISBN 3-13-314306-9.
  • Renate Lüllmann-Rauch: Taschenlehrbuch Histologie. 2. Auflage. Thieme Verlag, Stuttgart, ISBN 3-13-129242-3.
  • Benno Romeis: Mikroskopische Technik, 16. Auflage 1968. Verlag R. Oldenbourg, München.
  • Peter Stanka: Zellen und Gewebe des Menschen. Basistext zur Histologie für Mediziner. 4. Auflage 1990, Bochum, Verlag N. Brockmeyer. ISBN 3-88339-785-7.
  • Schiebler: Histologie. Springer-Verlag.
  • H. Leonhardt: Histologie, Zytologie und Mikroanatomie des Menschen. Thieme-Verlag, Stuttgart.
  • W. Kühnel: Taschenatlas der Zytologie, Histologie und mikroskopischen Anatomie. Thieme-Verlag, Stuttgart.
  • U. Welsch: Lehrbuch Histologie.
  • U. Welsch: Atlas Histologie.
  • Werner Tackmann: Repetitorium der Histologie, Teil 1 Zell- und Gewebelehre. 1999, ISBN 3-932723-00-7; 'Teil 2 Organe und Systeme. 1999, ISBN 3-932723-01-5.
  • N. Ulfig: Kurzlehrbuch Histologie. 2. Auflage, Thieme Verlag, Stuttgart, ISBN 3-13-135572-7.
  • J.A. Kiernan: Histological and histochemical Methods. Arnold, 1999, ISBN 0-7506-4936-4.
  • Gudrun Lang: Histotechnik. Springer, Wien/New York 2006, ISBN 3-211-33141-7.
  • M. Hartmann, M.A. Pabst: Zytologie, Histologie und Mikroskopische Anatomie. Facultas Verlag, 2009, ISBN 978-3-7089-0348-4.
  • Georg Dhom: Geschichte der Histopathologie. Springer, Berlin 2001.

Organ (Biologie)

Wechseln zu: Navigation, Suche
Der Titel dieses Artikels ist mehrdeutig. Dieser Artikel behandelt das Organ in der Biologie, für weitere Bedeutungen siehe Organ
Organe der Frau im Abdomen (Zeichnung von Leonardo da Vinci um 1507)

Als Organ (von altgriechisch ὄργανον órganon ‚Werkzeug‘, ‚Sinneswerkzeug‘, ‚Organ‘)[1] wird in der Biologie ein spezialisierter Teil des Körpers bezeichnet, der aus unterschiedlichen Zellen und Geweben besteht. Ein Organ stellt eine abgegrenzte Funktionseinheit innerhalb eines vielzelligen Lebewesens dar. Von Organen spricht man dann, wenn diese auf eine eigene Organanlage zurückgehen und eine spezifische Organogenese durchlaufen. Das Zusammenspiel der Organe realisiert den Organismus. Organe sind in ihrer Funktion direkt miteinander durch Organsysteme verbunden. Dies gilt sowohl für die Beschreibung menschlicher als auch tierischer oder pflanzlicher Organsysteme. Auch Einzeller besitzen geordnete Funktionseinheiten innerhalb der Zelle. Bei Prokaryoten liegen diese frei im Cytosol vor, bei Eukaryoten sind einige von einer Membran umschlossen (→ Organellen).

Funktionale Klassifikation

Eine einheitliche Zuordnung von bestimmten Funktionen zu Organen ist oft problematisch, da viele Organe bei verschiedenen Lebewesen unterschiedliche Aufgaben übernehmen können, die bei anderen Lebewesen auf mehrere Organe verteilt sind. Ein Beispiel ist hierfür die Kieme von Fischen, die sowohl für die Atmung als auch für die Stoffausscheidung dient und somit teilweise die Funktion einer Niere ersetzt.

Organe bei Wirbeltieren

Organgewichte beim Menschen

Daten auf Grundlage folgender Vergleichswerte: Alter 20–30 Jahre, Lebensdauer 70 Jahre, Größe: 170 cm, Gewicht: 70 kg und Körperfläche von 1,8 Quadratmeter.

  • Gesamtkörper: 70 kg = 100 % des Körpergewichts
    • Muskeln: 30 kg = 43 % des Körpergewichts
    • Skelett ohne Knochenmark: 7 kg = 10 % des Körpergewichts
    • Haut und subkutanes Gewebe: 6,1 kg = 8,7 % des Körpergewichts
    • Blut: 5,4 kg = 7,7 % des Körpergewichts
    • Verdauungstrakt: 2,0 kg = 2,9 % des Körpergewichts
    • Leber: 1,7 kg = 2,4 % des Körpergewichts
    • rotes Knochenmark: 1,5 kg = 2,1 % des Körpergewichts
    • Gehirn: 1,3 kg = 1,8 % des Körpergewichts
    • beide Lungenflügel: 1,0 kg = 1,4 % des Körpergewichts
    • Herz: 0,3 kg = 0,43 % des Körpergewichts
    • beide Nieren: 0,3 kg = 0,43 % des Körpergewichts
    • Schilddrüse: 0,02 kg = 0,03 % des Körpergewichts
    • Milz: 0,18 kg = 0,26 % des Körpergewichts

Pathologie

Wechseln zu: Navigation, Suche
Dieser Artikel behandelt das Teilgebiet der Medizin. Für den Begriff pathologisch in der Mathematik siehe pathologisches Beispiel.

Die Pathologie ist ein Teilgebiet der Medizin, das sich mit krankhaften und abnormen Vorgängen und Zuständen im Körper sowie mit deren Ursachen beschäftigt. Gegenstand der Erforschung sind sowohl Einzelphänomene (Symptome) als auch Symptomverbände (Syndrome) sowie Missbildungen aller Art. Die Pathologie untersucht die Herkunft (Ätiologie), die Entstehungsweise (Pathogenese), die Verlaufsform und die Auswirkungen von Krankheiten einschließlich der jeweiligen Vorgänge im Körper (Pathophysiologie).

Die Pathologie als medizinische Fachrichtung (Facharztausbildung) beschäftigt sich hauptsächlich mit den morphologisch[1] fassbaren krankhaften Veränderungen. Die pathologische Diagnostik beruht in erster Linie auf der Beurteilung von Geweben anhand ihrer makroskopischen (pathologische Anatomie) und lichtmikroskopischen Aspekte (Histopathologie, Zytologie). Zunehmend werden biochemische und molekularbiologische Methoden eingesetzt, in der Forschung die Elektronenmikroskopie. Pathologen führen auch klinische Obduktionen durch. Die Untersuchung von Geweben lebender Patienten (Biopsie) überwiegt jedoch bei weitem.

Im medizinischen Sprachgebrauch bedeutet pathologisch „krankhaft“, aber auch „krankheitsbezogen“. Im weiteren Sinne wird der Begriff bzw. die Vorsilbe patho- in der Medizin für krankhafte oder abnorme Befunde genutzt. Beispielsweise wird von einem „pathologischen EKG“ oder bei krankhaften psychischen Veränderungen von Psychopathologie gesprochen.

Etymologie

Der griechische Begriff παθολογία pathologia leitet sich von den Wörtern πάθος páthos ‚Krankheit, Leiden, Leidenschaft‘ und λόγος lógos ‚Wort, Sinn, Vernunft, Lehre‘ ab, bedeutet also wörtlich ‚die Lehre vom Leiden‘ oder ‚Krankheitslehre‘. Heute wird der griechische Begriff vor allem für die Innere Medizin verwendet.

Geschichte

In ihrer heutigen Form geht die Pathologie auf den italienischen Forscher Giovanni Battista Morgagni (1682–1771) zurück, der mit seinem fünfbändigen Werk De sedibus et causis morborum („Vom Sitz und den Ursachen der Krankheiten“) im Jahre 1761 den Grundstein für die wissenschaftlichen Forschungen legte.

Bereits im Altertum wurden in Ägypten und Griechenland Leichenöffnungen durchgeführt, die aber mehr der anatomischen Bildung dienten. Erst mit Ende des 18. Jahrhunderts wurden auf Grund des zunehmenden Verständnisses für die Bedeutung der Leichenschau erste Fachvertreter, die eigens für die Sektionen verantwortlich waren, bestellt. Der erste sogenannte Prosektor (lat. prosecare: vorschneiden) begann 1796 am Wiener Allgemeinen Krankenhaus seine Arbeit. Der erste Lehrstuhl für Pathologie wurde 1819 in Straßburg eingerichtet (Jean-Frédéric Lobstein, 1777–1835). Als Prüfungsfach wurde Pathologie im Jahre 1844 in Wien eingeführt.

1858 entwickelte Rudolf Virchow die Zellularpathologie, die nun auf der Ebene von Körperzellen pathologische Veränderungen untersuchte. Diese ist ein Hauptbestandteil des heute gültigen Krankheitskonzepts.

Aufgaben des Pathologen

Biopsien

Hauptartikel: Biopsie

Nach operativer Entfernung eines Organs oder Entnahme eines kleinen Gewebsstückes bzw. von Zellproben (Zytodiagnostik) durch einen Arzt, wird das entsprechende Gewebe vom Pathologen untersucht. Kleine Biopsien werden direkt zu Schnittpräparaten weiterverarbeitet, welche unter dem Mikroskop betrachtet werden. Große Präparate werden zunächst präpariert und mit dem bloßen Auge (makroskopisch) beurteilt. Auffällige Bestandteile mit möglichen krankhaften Veränderungen werden aus dem Präparat herausgeschnitten (sog. „Zuschnitt“) und wiederum vom Labor zu Schnittpräparaten verarbeitet. Eine Sonderform des Zuschnitts ist der Schnellschnitt. Hier werden intraoperativ (während einer Operation, in der der Patient noch in Narkose liegt) Gefrierschnitte von Gewebe angefertigt, z. B. ein Resektionsrand bei einer Tumoroperation. Da Gefrierschnitte generell eine schlechtere Qualität besitzen und häufig keine weiterführenden Untersuchungen ermöglichen, werden standardmäßig außerhalb von Schnellschnitt-Situationen Paraffinschnitte mit HE-Färbung angefertigt.

Mit Hilfe des Mikroskops gibt der Pathologe Auskunft über die Art einer Erkrankung und ihren Schweregrad. Er stellt somit Diagnosen, die durch eine alleinige klinische oder radiologische Untersuchung nicht gestellt werden können. Insbesondere im Fall eines Tumors und der Frage nach der Gut- oder Bösartigkeit ist ein Pathologe gefragt. Er begutachtet den Typ, die Größe, die Ausdehnung, die Bösartigkeit eines Tumors und prüft, ob er bei der Operation im Gesunden entfernt wurde. Er liefert dem klinischen Arzt somit viele wichtige Prognosefaktoren (z. B. TNM-Klassifikation), die zur richtigen Behandlung des Patienten unverzichtbar sind. Neben der histologischen Beurteilung werden in der modernen Pathologie auch hochspezialisierte Verfahren wie die Immunhistochemie oder die Molekularpathologie (z.B. Fluoreszenz-in-situ-Hybridisierung, PCR) eingesetzt. Damit können Informationen über einen Tumor auf molekularer Ebene gewonnen werden, die für eine bestimmte Therapieform entscheidend sind (z. B. Hormonrezeptoren beim Brustkrebs als Grundlage zur Behandlung mit Tamoxifen).

Obduktion

Hauptartikel: Obduktion

Eine weitere Aufgabe des Pathologen besteht in der Durchführung von Obduktionen, weshalb die Pathologie häufig mit der Rechtsmedizin verwechselt wird. Eine Obduktion durch den Pathologen kann nur vorgenommen werden, wenn ein Patient eines natürlichen Todes gestorben ist (z. B. nach einem Herzinfarkt) und seine Angehörigen mit der Obduktion einverstanden sind. Dabei dient diese sog. klinische Obduktion der Klärung der Todesursache und der vorbestehenden Erkrankungen. Sie gibt dem behandelnden Arzt eine Rückmeldung über die Richtigkeit seiner Diagnosen und seiner Behandlung. Häufig kann eine solche Klärung der Todesursache für die Angehörigen entlastend sein und sie von Selbstvorwürfen befreien (z. B. nach dem plötzlichen Einsetzen eines tödlichen Krankheitsverlaufes). Auch kann eine Obduktion Hinweise auf familiäre Risikofaktoren geben (z. B. Krebsarten oder erbliche Erkrankungen). Die Rechtsmedizin hingegen beschäftigt sich mit der Klärung unnatürlicher Todesursachen (z. B. Mord oder Unfall). Sowohl Pathologen als auch Rechtsmediziner stören sich daran, wenn in Fernsehkrimis und im allgemeinen Sprachgebrauch stets nur von „Pathologen“ bzw. „Pathologie“ die Rede ist, es sich aber im Allgemeinen um einen Rechtsmediziner handelt. Der geläufige Irrtum erklärt sich aus einer Fehlübersetzung: Im amerikanischen Sprachgebrauch entspricht der Rechtsmediziner dem forensic pathologist.

Obwohl die meisten Laien bei der Pathologie an Obduktionen denken, dient die Arbeit des Pathologen heutzutage in erster Linie dem lebenden Patienten. Durch seine histologischen Untersuchungen leistet er einen wichtigen Beitrag zur richtigen Behandlung. In der modernen Pathologie stehen wenige Obduktionen (je nach Institut zwischen 0 und 200 pro Jahr) zehntausenden Biopsien von lebenden Patienten entgegen.

Qualitätssicherung

Die Pathologie ist weiterhin eines der wichtigsten Instrumente der Qualitätssicherung in der Medizin. Um den medizinischen Standard zu halten und zu verbessern, wird oft eine kollegiale Konfrontation der Ärzteschaft mit der kontrollierenden Diagnostik des Pathologen gefordert, nicht nur während des Lebens des Patienten, sondern auch nach dessen Tod.

Teilgebiete der Pathologie

Nach der Art der Untersuchung unterscheidet man:

  • Pathologische Anatomie: Die Untersuchung krankhafter Gewebsveränderungen aller Art; viele davon sind zum Beispiel bei einer Obduktion schon mit bloßem oder unbewaffnetem Auge zu sehen. Der Begründer der Pathologischen Anatomie ist Giovanni Battista Morgagni aus Forlì (Italien).
  • Histopathologie: Verfahren der mikroskopischen Krankheitsdiagnostik an gefärbten Gewebeschnitten. Die Histopathologie ist die häufigste Untersuchungsmethode, da in der Regel Gewebeproben in Form von Biopsien oder auch von Operationspräparaten vorliegen. Zudem erlaubt nur die histologische Untersuchung die sichere Diagnose eines Tumors. Ein Grading, die Tumorgröße und Informationen über eine Entfernung im Gesunden können nur mit Hilfe dieser Untersuchung festgestellt werden. Sie findet nicht nur für Tumoren, sondern allgemein für über 90 % aller untersuchten Proben Anwendung (z.B. entfernter Blinddarm, Leberfleck). Für die meisten diagnostischen Fragestellungen ist sie der Goldstandard in der Pathologie. Eine weitere Form der Histopathologie ist die Immunhistochemie.
  • Zytopathologie: Verfahren zur mikroskopischen Diagnose von Krebs an Einzelzellen (Zytodiagnostik), anstelle von Geweben (Histopathologie). Das bekannteste zytologische Verfahren ist der Abstrich vom Muttermund zur Früherkennung des Gebärmutterhalskrebs. Weiteres Anwendungsbeispiel ist das Erkennen einzelner Tumorzellen im Urin, in Körperhöhlenergüssen oder Bronchialsekreten, wobei hier in den meisten Fällen keine Aussage über die Art des Tumors (Differenzierungsgrad, Zellart) gemacht werden kann.
  • Molekularpathologie: Untersuchung von Einzelzellen und Gewebe auf molekularer Ebene (z.B. Fluoreszenz-in-situ-Hybridisierung, PCR, DNA-Zytometrie).

Im Laufe seiner Facharztausbildung erwirbt der Pathologe Kenntnisse auf allen Teilgebieten der Pathologie.

Jede organische Struktur zeigt spezifische pathologische Veränderungen. Ihre Erforschung konstituiert einen eigenen Teilbereich der Pathologie, so dass beim Nervensystem beispielsweise von Neuropathologie die Rede ist. Generell hat jede Organismusform ihre eigene Pathologie, die derart unterschiedlich ist, dass die Tiermedizin einen von der Humanmedizin getrennten Bereich darstellt (der seinerseits schon einen Sonderbereich wie die Zahnmedizin aufweist).

Daneben gibt es verschiedene, teilweise historisch bedingte allgemeinere und eher theoretische Betrachtungsweisen in der Pathologie wie etwa die Humoralpathologie, Solidarpathologie, Zellularpathologie, Relationalpathologie oder Neuralpathologie.

Neben diesen Teilgebieten gibt es noch die sich mit der Vorzeit befassende Paläopathologie.

Ausbildung zum Facharzt für Pathologie (Humanmedizin)

Die Ausbildung zum Pathologen oder Neuropathologen setzt die Approbation als Arzt und damit ein erfolgreich abgeschlossenes mind. 6-jähriges Studium der Humanmedizin voraus. Darauf aufbauend folgt eine mindestens 6-jährige Weiterbildung zum Facharzt, an deren Ende die Facharztprüfung steht.

Quellen

  1. Hochspringen Werner Hueck: Morphologische Pathologie. Eine Darstellung morphologischer Grundlagen der allgemeinen und speziellen Pathologie, 2. Aufl., Leipzig, 1948

Literatur

  • Pathologie. Böcker, Denk, Heitz. ISBN 3-437-42381-9
  • Allgemeine und spezielle Pathologie. Riede, Schaefer. ISBN 3-13-129684-4
  • Allgemeine Pathologie; Spezielle Pathologie. Büttner, Thomas. ISBN 3-7945-1840-3
  • Robbins & Cotran Pathologic Basis of Disease. Kumar, Fausto, Abbas. Seventh Edition (2004) ISBN 0-7216-0187-1
  • Pathologie verstehen. Molekulare Grundlagen der allgemeinen Pathologie. Oberholzer ISBN 3-13-129041-2
  • Medizin am Toten oder am Lebenden? Pathologie in Berlin und in London 1900-1945. Cay-Rüdiger Prüll. Schwabe Verlag, Basel 2004 (Zitat aus einer Rezension: „...ein entscheidender Beitrag zur Rolle der Pathologie im gesellschaftlichen Raum“)
  • Surgical Pathology. Rosai and Ackerman, 9th Edition, Mosby, 2004
  • Pathologie. Remmele (Hrsg.). ISBN 3-540-61095-2
  • Böcking, Alfred: Mit Zellen statt Skalpellen (Sankt Augustin 2006), ISBN 3-86541-177-0

 

Gewebearten

Literatur

  • Hans-Christian Burck: Histologische Technik. Thieme-Verlag, Stuttgart, ISBN 3-13-314306-9.
  • Renate Lüllmann-Rauch: Taschenlehrbuch Histologie. 2. Auflage. Thieme Verlag, Stuttgart, ISBN 3-13-129242-3.
  • Benno Romeis: Mikroskopische Technik, 16. Auflage 1968. Verlag R. Oldenbourg, München.
  • Peter Stanka: Zellen und Gewebe des Menschen. Basistext zur Histologie für Mediziner. 4. Auflage 1990, Bochum, Verlag N. Brockmeyer. ISBN 3-88339-785-7.
  • Schiebler: Histologie. Springer-Verlag.
  • H. Leonhardt: Histologie, Zytologie und Mikroanatomie des Menschen. Thieme-Verlag, Stuttgart.
  • W. Kühnel: Taschenatlas der Zytologie, Histologie und mikroskopischen Anatomie. Thieme-Verlag, Stuttgart.
  • U. Welsch: Lehrbuch Histologie.
  • U. Welsch: Atlas Histologie.
  • Werner Tackmann: Repetitorium der Histologie, Teil 1 Zell- und Gewebelehre. 1999, ISBN 3-932723-00-7; 'Teil 2 Organe und Systeme. 1999, ISBN 3-932723-01-5.
  • N. Ulfig: Kurzlehrbuch Histologie. 2. Auflage, Thieme Verlag, Stuttgart, ISBN 3-13-135572-7.
  • J.A. Kiernan: Histological and histochemical Methods. Arnold, 1999, ISBN 0-7506-4936-4.
  • Gudrun Lang: Histotechnik. Springer, Wien/New York 2006, ISBN 3-211-33141-7.
  • M. Hartmann, M.A. Pabst: Zytologie, Histologie und Mikroskopische Anatomie. Facultas Verlag, 2009, ISBN 978-3-7089-0348-4.
  • Georg Dhom: Geschichte der Histopathologie. Springer, Berlin 2001.

 

Organsystem

Wechseln zu: Navigation, Suche

Als Organsystem bezeichnet man eine funktionell zusammen gehörende Gruppe von Organen. Als Synonym für „System“ hat sich der Begriff „Apparat“ eingebürgert. Diese Gruppierung ist Grundlage der Systematischen Anatomie.

So werden zum Beispiel zum Verdauungssystem (oder Verdauungsapparat) alle Organe zusammengefasst, die der Aufnahme (Lippen, Mundhöhle), der Zerkleinerung (Zähne), dem Transport (Speiseröhre), dem enzymatischen Aufschluss und der Resorption der Nahrung (Magen-Darm-Trakt, Leber, Bauchspeicheldrüse) sowie der Ausscheidung (Rektum, Anus) nicht verwertbarer Restprodukte dienen.

Diese Einteilung berücksichtigt nicht, dass es natürlich zahlreiche Überschneidungen und Wechselwirkungen zwischen den Organsystemen gibt, also kein Organsystem unabhängig von den anderen agiert. So wird das Verdauungssystem durch Gefäße mit Blut versorgt (Herz-Kreislauf-System), durch Nerven gesteuert (Nervensystem), die Kotabgabe wird durch die Bauchmuskeln unterstützt (Bewegungsapparat). Darüber hinaus spielt es eine Rolle bei Abwehrvorgängen und ein Teil der resorbierten Nährstoffe wird über Lymphe abtransportiert. Ein weiteres Problem bei der Gliederung in Organsysteme sind Mehrfachfunktionen. So hat z.B. die Leber vielfältige Funktionen und könnte zu mehreren Organsystemen gerechnet werden.

Beim Menschen unterscheidet man folgende Organsysteme:

 

Nervensystem

Wechseln zu: Navigation, Suche
Übersicht über das menschliche Nervensystem

Der Begriff Nervensystem (lateinisch Systema nervosum) bezeichnet die Gesamtheit aller Nerven- und Gliazellen in einem Organismus. Es ist ein Organsystem der höheren Tiere, welches die Aufgabe hat, Informationen über die Umwelt und den Organismus aufzunehmen, zu verarbeiten und Reaktionen des Organismus zu veranlassen, um möglichst optimal auf Veränderungen zu reagieren. Das Nervensystem realisiert eine der Grundeigenschaften des Lebens, die Reizbarkeit (Irritabilität).

Evolution

Im Verlauf der Evolution und mit der Höherentwicklung einzelner Abteilungen des Tierreichs ist eine deutliche Tendenz zur Konzentration und damit einhergehender Spezialisierung von Teilen des Nervensystems festzustellen. Während bei primitiven Tieren noch manchen Einzelneuronen spezielle Funktionen zufallen (z. B. Schrittmacher-Neurone, die den Takt für elementare Körperbewegungen von Würmern vorgeben), verrichten in hochkomplexen Nervensystemen bis zu mehrere Milliarden Neuronen im Verbund spezielle Aufgaben.

In Nervensystemen mit Zentralganglien kann die Erregungsleitung der Neurone in Afferenzen (von den Sensoren zum Gehirn) und Efferenzen (vom Gehirn zu den Effektoren, z. B. Muskeln) unterteilt werden.

Hohltiere

Als primitivste Nervensysteme gelten die relativ homogenen Nervennetze von Nesseltieren. Bei Nesseltieren findet man Markstränge (Siehe auch: Hohltiere, Polyp).

Platt- und Fadenwürmer

Platt- und Fadenwürmer besitzen ein strangförmiges Nervensystem.

Gliederfüßer

Schematischer Aufbau eines Strickleiternervensystems
Strickleiternervensystem der Insekten

Bei den Gliederfüßern kommt es bereits zur Ausbildung von höheren Verarbeitungszentren in Form mehrerer Nervenknoten (Ganglien). Diese Ganglien sind durch zwei Nervenstränge strickleiterartig miteinander verbunden, weshalb man hier von einem Strickleiternervensystem spricht. Bei den meisten dieser Tiere ist das Oberschlundganglion besonders groß ausgebildet. Es übernimmt bereits Funktionen eines „Gehirns“, insbesondere die Verarbeitung von Sinnesreizen. Die Ganglien der Körpersegmente steuern häufig die Bewegungen der Bein- und Flügelmuskulatur weitestgehend autonom. Die Strickleiternervensysteme liegen (mit Ausnahme des Oberschlundganglions) unterhalb des Verdauungsapparates. Daher spricht man auch vom Bauchmark.

Siehe auch: Ringelwürmer, Insekten, Spinnen, Krebse

Kopffüßer und Wirbeltiere

Nervensystem des Tintenfisches
(unbekannter Autor, 1876)
Nervensystem einer Erdkröte (Bufo bufo)

Besonders stark zentralisiert sind die Nervensysteme von Kopffüßern und Wirbeltieren. Bei ihnen werden sehr viele Funktionen des Nervensystems und der Muskeln zentral gesteuert. Man spricht daher von einem Zentralnervensystem. Dieses besteht aus dem Gehirn und dem Rückenmark, die knöchern umhüllt sind. Die außerhalb des Zentralnervensystems liegenden neuronalen Strukturen werden als peripheren Nervensystem bezeichnet und weisen eine Bindegewebshülle auf. Abgesehen von dieser topographischen Einteilung kann das Nervensystem auch funktionell in das somatische Nervensystem (auch animalisches Nervensystem genannt) und das vegetative Nervensystem (auch viszerales oder autonomes Nervensystem) eingeteilt werden. Dabei ist das somatische Nervensystem für die Wahrnehmung äußerer Reize und die Ausführung willkürlicher Bewegung zuständig, während das vegetative Nervensystem vorwiegend mit der Steuerung der Tätigkeit der außerhalb des Bewusstseins ablaufenden Körperfunktionen betraut ist. Das vegetative Nervensystem besteht aus dem Sympathikus und Parasympathikus als Gegenspielern und dem enterischen Nervensystem.

Aufbau

Schema einer Nervenzelle

Das Nervensystem entspricht der Gesamtheit des in einem Organismus vorhandenen Nervengewebes. Es besteht aus vernetzten Nervenzellen (Neuronen) sowie Gliazellen.

Bei höheren Lebewesen besteht das Nervengewebe aus einem Netz aus Neuronen und an vielen Stellen docken Gliazellen an. Letztere unterstützen die Tätigkeit der Nervenzellen. Durch Modulation der extrazellulären Konzentrationen von Ionen und Transmittern sowie der Regulation des lokalen Blutflusses, von dem Sauerstoffversorgung und die Verfügbarkeit hormonaler Neuromodulatoren (Bsp. NO) abhängen, beeinflussen sie die Weiterleitung elektrischer Impulse von Neuron zu Neuron.

Erkrankungen

Erkrankungen des Nervensystems treten meist erst im Laufe des Lebens auf, seltener sind sie angeboren. Sie haben meist weitreichende Folgen und schränken den Erkrankten stark in seiner Handlungsfreiheit ein.

Einige relativ bekannte Beispiele:

  • Die Amyotrophe Lateralsklerose (oder Amyotrophische Lateralsklerose, Myatrophe Lateralsklerose, englisch auch Motor Neuron Disease; auch Lou-Gehrig-Syndrom oder nach dem Erstbeschreiber Charcot-Krankheit), kurz ALS, ist eine degenerative Krankheit des motorischen Nervensystems.
  • Die Parkinson-Krankheit ist eine Krankheit des zentralen Nervensystems, die mit dem Verlust spezifischer, dopaminproduzierender Gehirnzellen einhergeht.
  • Die Multiple Sklerose (MS), häufig auch Encephalomyelitis disseminata, ist eine chronisch-entzündliche Entmarkungserkrankung des zentralen Nervensystems (ZNS), deren Ursache trotz großer Forschungsanstrengungen noch nicht geklärt ist.

Hormonsystem

Wechseln zu: Navigation, Suche
Übersicht der endokrinen Drüsen:
1  Zirbeldrüse
2  Hypophyse
3  Schilddrüse und Nebenschilddrüsen
4  Thymus
5  Nebenniere
6  Pankreas
7  Ovar
8  Hoden

Das Hormonsystem, auch als endokrines System (von griech. ἔνδον endon ‚innen‘ und κρίνειν krinein ‚entscheiden‘) bezeichnet, ist ein Organsystem zur Steuerung der Körperfunktionen, die sich vom Wachstum über die Fortpflanzung bis hin zum täglichen Verdauungsvorgang erstrecken.

Das Hormonsystem übt seine Funktion durch über dreißig verschiedene Hormone aus. Die Hormone sind chemische Botensubstanzen und werden über den Blutkreislauf (endokrin) zu ihren Zielorganen geleitet oder entfalten ihre Wirkung direkt auf Nachbarzellen (parakrin). Die Wirkung wird über spezielle Hormonrezeptoren an der Plasmamembran der Zellen oder im Zytosol vermittelt. Das medizinische Fachgebiet, welches sich mit Erkrankungen des Hormonsystems (Endokrinopathien) beschäftigt, ist die Endokrinologie.

Einteilung

Zu den endokrinen Drüsen gehören:

Auch die Leydig-Zellen im Hoden, der Gelbkörper und die Ovarialfollikel im Eierstock lassen sich zu den endokrinen Drüsen zählen, außerdem jene Herzmuskelzellen, die das atriale natriuretische Peptid produzieren. Die Paraganglien nehmen eine Zwischenstellung zwischen endokrinem und Nervensystem ein. Das endokrine System ist sehr eng mit dem Nervensystem gekoppelt, weshalb beide auch als neuroendokrines System zusammengefasst werden. Die Zirbeldrüse wird teilweise auch dem Nervensystem zugeordnet (sogenanntes zirkumventrikuläres Organ).

Darüber hinaus gibt es in fast allen Epithelien endokrine Zellen die in ihrer Gesamtheit auch als diffuses neuroendokrines System (DNES) oder APUD bezeichnet werden. Am besten erforscht sind diese Zellen im Magen-Darm-Trakt, hier auch als Gastro-entero-pankreatisches endokrines System (GEP) bezeichnet. Die Mehrzahl dieser Zellen wirkt allerdings parakrin, für einige ist aber eine endokrine Wirkstoffübertragung bewiesen.

Innerhalb des endokrinen System sind Gruppen endokriner Organe durch Kommunikationsnetze miteinander verbunden. Dadurch wird eine sinnvolle Funktion des Gesamtsystems gewährleistet. Typische Strukturen dieser Wirkungsgefüge sind Regelkreise, Umfeldhemmungen und Systeme mit antagonistischer Redundanz.

Hypothalamus

Hypothalamus und Hypophyse
→ Hauptartikel Hypothalamus

Der Hypothalamus, ein kleiner Bereich im Zwischenhirn, verbindet dieses mit dem Hormonsystem. Über ein Pfortadersystem hat er Kontakt zur Hirnanhangdrüse (Hypophyse) und reguliert deren Hormonausschüttung. Der Großteil des Informationsaustausches findet über dieses System durch Hormone statt, die in den Nervenzellen (Neuronen) des Hypothalamus gebildet werden. Er regelt so die Körpertemperatur, den Herzschlag und die Nierenfunktion, aber auch Hunger und Durst sowie unseren Schlafrhythmus und den Geschlechtstrieb.

Das Zwischenhirn liegt zwischen dem Klein- und dem Großhirn. Von hier aus wird das autonome Nervensystem gesteuert, das unter anderem für den Energie-, Wärme- und Wasserhaushalt unseres Körpers zuständig ist.

Hirnanhangdrüse

→ Hauptartikel Hypophyse

Die übergeordnete Drüse innerhalb des endokrinen Systems ist die erbsengroße Hirnanhangdrüse, die in einer knöchernen Vertiefung der mittleren Schädelgrube liegt und den überwiegenden Teil des Hormonsystems kontrolliert. Sie ist die Zentrale des Hormonsystems und den anderen endokrinen Organen übergeordnet. Neben der Produktion eigener Hormone beeinflusst sie auch die Hormonproduktion der anderen endokrinen Drüsen. Die Hirnanhangdrüse besteht aus zwei Hälften, die unabhängig voneinander arbeiten: Hypophysenhinterlappen (Neurohypophyse) und Hypophysenvorderlappen (Adenohypophyse).

Der Hypophysenhinterlappen ist über den Hypophysenstiel direkt mit dem Hypothalamus verbunden. Entwicklungsgeschichtlich ein Teil des Hypothalamus (also des Gehirns) speichert er Hormone, die dort gebildet und über die gemeinsame Nervenverbindung zu ihm transportiert werden.

Der Hypophysenvorderlappen hat unmittelbare Verbindung zum Hypothalamus. Im Vorderlappen werden verschiedene Hormone produziert, die direkt auf das Körpergewebe und auf andere Drüsen wirken. Sie werden von Faktoren gesteuert, die sich im Hypothalamus bilden und über ein spezielles Gefäß zum Vorderlappen gelangen. Darüber hinaus reagiert der Vorderlappen selbständig auf einen hohen Hormonspiegel im Blut. Wenn beispielsweise der Schilddrüsenhormonspiegel ausreichend hoch ist, wird die Produktion des Hormons, das die Schilddrüse zu ihrer Hormontätigkeit anregt, eingestellt.

Schilddrüse

→ Hauptartikel Schilddrüse

Die unterhalb des Kehlkopfes liegende Schilddrüse produziert die beiden Hormone Thyroxin und Triiodthyronin, die über den Blutkreislauf zu den Körperzellen gelangen.

Diese Hormone sind zuständig für den Energieumsatz der Zellen und für die Eiweißproduktion. Damit die Schilddrüse sie produzieren kann, benötigt sie Jod, das sie aus dem Blut bekommt und speichert. Erfolgt die Geschwindigkeit des Energieumsatzes schneller oder langsamer als normal, so spricht man von Schilddrüsenüberfunktion beziehungsweise Schilddrüsenunterfunktion. Erhöhte Werte können Nervosität, Gewichtsverlust und seelische Spannungen bewirken, während im anderen Extremfall die Körperfunktionen langsamer ablaufen.

Nebenschilddrüse

→ Hauptartikel Nebenschilddrüse

Die vier kleinen Nebenschilddrüsen liegen an der Rückseite der Schilddrüse. Ihr Hormon (das Parathormon) hat die Funktion, den Calciumhaushalt des Körpers zu regulieren.

Calcium braucht der Körper für den Knochen- und Zahnaufbau, für die Funktion von Nerven- und Muskelzellen und für die Blutgerinnung. Zusammen mit Vitamin D, das unter Lichteinfluss in der Haut gebildet wird, ermöglicht das Hormon der Nebenschilddrüsen die Calciumaufnahme aus der Nahrung.

Wenn dem Körper nicht genügend Calcium zugeführt wird, bewirkt das Hormon die Abgabe von Calcium aus den Knochen in das Blut.

Bauchspeicheldrüse

Endokrine Drüsen im Verdauungssystem
→ Hauptartikel Langerhans-Inseln

Die hinter dem Magen im Oberbauch liegende Bauchspeicheldrüse (Pancreas) besteht als einzige Drüse aus einem endokrinen und einem exokrinen Anteil; es handelt sich also quasi um zwei Organe in einem. Der endokrine Anteil – die Langerhans-Inseln – produziert Insulin und Glucagon und reguliert auf diese Weise den Blutzuckerspiegel, während vom größeren exokrinen System ein enzymhaltiger Verdauungssaft kommt, der über spezielle Gänge in den Zwölffingerdarm (Duodenum) geleitet wird.

Nebennieren

→ Hauptartikel Nebenniere

Die Nebennieren, die wie Kappen auf den Nieren aufliegen, regulieren den Wasser- und Salzhaushalt des Körpers und unterstützen ihn bei der Bewältigung von "Notsituationen". Die Nebennieren bestehen aus zwei unterschiedlichen Geweben: inneres Nebennierenmark und Nebennierenrinde. Das innere Nebennierenmark produziert die Hormone Adrenalin und Noradrenalin. In Gefahren- oder Stresssituationen wird Adrenalin aus dem Nebennierenmark in die Blutbahn abgegeben. Dadurch erhöht sich die Herzschlagfrequenz, und die Blutgefäße der Haut und der Eingeweide verengen sich; daher der Spruch: Er bekam kalte Füße. Das Blut steht der arbeitenden Muskulatur zur Verfügung, und der Blutdruck steigt an. Gleichzeitig wird der in Leber und Muskeln gespeicherte Zucker zu Einfachzucker abgebaut, damit der Körper mehr Energie zur Verfügung hat.

Die Nebennierenrinde produziert drei Arten von Steroidhormonen mit unterschiedlichen Funktionen: Aldosteron reduziert die Salzausscheidung über die Nieren und erhöht damit den Wassergehalt des Körpers. Die Abgabe von Aldosteron wird durch das in der Niere produzierte Renin gesteuert. Ist der Aldosteronspiegel zu gering, produziert die Niere verstärkt Renin.

Bei gesteigertem Energiebedarf des Körpers erhöht Kortisol den Blutzuckerspiegel. Es wandelt Eiweiß in Zucker um und arbeitet so mit den Hormonen Adrenalin und Glucagon zusammen, die ebenfalls den Blutzuckerspiegel erhöhen. Ein hoher Kortisolspiegel bewirkt eine verringerte Infektabwehr des Körpers.

Geschlechtsdrüsen

→ Hauptartikel Eierstock und Hoden

Die Geschlechtsdrüsen sind paarweise angelegt, bei der Frau als mandelförmige Eierstöcke im Beckenbereich der Bauchhöhle, beim Mann als eiförmige Hoden im Hodensack. Sowohl beim Mann als auch bei der Frau werden die Geschlechtshormone Östrogen, Progesteron, Testosteron und Androsteron produziert. Allerdings ist aufgrund ihres unterschiedlichen Mengenverhältnisses die Wirkung bei der Frau anders als beim Mann.

Die männlichen Geschlechtsmerkmale – zum Beispiel Bartwuchs und tiefe Stimme – sind durch ein Übergewicht an Testosteron und Androsteron geprägt. Dagegen sind Östrogen und Progesteron für die weiblichen Geschlechtsmerkmale – zum Beispiel die Entwicklung der Brüste und Verbreiterung der Hüften – verantwortlich.

 

Blutkreislauf

Wechseln zu: Navigation, Suche

Der Blutkreislauf oder Kreislauf ist das Strömungssystem des Blutes, das vom Herzen und, wenn vorhanden, einem Netz aus Blutgefäßen (kardiovaskuläres System) gebildet wird. Umgangssprachlich wird es auch die Blutbahn, fachsprachlich auch Blutgefäßsystem genannt. Bei Tieren, deren Organe von Hämolymphe statt von Blut versorgt werden, spricht man ebenfalls von Kreislauf.

Bei etlichen Gruppen der vielzelligen Tiere sichert ein Kreislauf das Überleben des Organismus, indem er den Stoffwechsel jeder einzelnen Körperzelle versorgt und die chemischen und physiologischen Eigenschaften der Körperflüssigkeiten aufrechterhält. Zum einen transportiert das Blut Sauerstoff aus den Lungen zu den Zellen und Kohlendioxid in entgegengesetzter Richtung (siehe auch Atmung). Zum anderen werden aus der Verdauung gewonnene Nährstoffe wie Fette, Zucker oder Eiweiße aus dem Verdauungstrakt in die einzelnen Gewebe transportiert, um dort je nach Bedarf verbraucht, weiterverarbeitet oder gespeichert zu werden. Die entstandenen Stoffwechsel- oder Abfallprodukte (zum Beispiel Harnstoff oder Harnsäure) werden dann in anderes Gewebe oder zu den Ausscheidungsorganen (Nieren und Dickdarm) transportiert. Außerdem verteilt das Blut auch Botenstoffe wie zum Beispiel Hormone, Zellen der Körperabwehr und Teile des Gerinnungssystems innerhalb des Körpers.

Schema des Blutkreislaufs beim Menschen:
rot = sauerstoffreiches Blut
blau = sauerstoffarmes Blut

Verbreitung und Formen

Bedingt durch die Entwicklungsgeschichte der Tiere gibt es unterschiedlich ausgeprägte Arten von Kreisläufen:

  • Die Tiergruppen der Schwämme, Stachelhäuter, Nesseltiere, Fadenwürmer und Plattwürmer besitzen kein Kreislaufsystem. So führt beispielsweise bei den Plattwürmern der Mund direkt in ein verästeltes Verdauungssystem, aus dem Nährstoffe wegen der Flachheit des Wurmes direkt in alle Zellen diffundieren können. Sauerstoff diffundiert aus dem Wasser in die Zellen.
  • Bei einer Reihe von wirbellosen Tieren wie den Gliederfüßern und Weichtieren (außer den Kopffüßern) findet man einen offenen Kreislauf, bei dem das Blut in den Körperhöhlen kreist. Hier wird die Körperflüssigkeit, die man als Hämolymphe bezeichnet, vom Herzen in kurze Gefäße und von dort in alle Körperhöhlen gepumpt, bis es schließlich ins Herz zurückfließt. Die Hämolymphe fließt dabei langsam und mit geringem Druck.
  • Bei Ringelwürmern wie dem Regenwurm existiert ein geschlossener Kreislauf, bei dem die blutähnliche Körperflüssigkeit durch kontraktile Gefäße in Bewegung gehalten wird.
  • Auch Wirbeltiere haben einen geschlossenen Kreislauf. Hier fließt das Blut durch ein geschlossenes Netz aus Blutgefäßen, das alle Organe erreicht. Herz und Blutgefäße bilden das Herz-Kreislauf-System. Dieses hat sich im Lauf der Evolution der Wirbeltiere stark verändert.
    • Bei den meisten Fischen sind Herz und Kiemen in Serie geschaltet. Eine Vermischung von sauerstoffarmen mit sauerstoffreichem Blut findet nicht statt.
    • Lungenfische und Landwirbeltiere haben einen separaten Lungenkreislauf. Bei den Vögeln und Säugern ist dieser vollständig vom Körperkreislauf getrennt, so dass in ihm ein sehr viel niedrigerer Druck herrschen kann.[1][2]
    • Bei den wechselwarmen (poikilothermen) Landwirbeltieren, also Amphibien und Reptilien, findet eine Vermischung von sauerstoffreichem und sauerstoffarmem Blut im Herzen statt, weil nur eine oder zwei unvollständig getrennte Herzkammern vorliegen. Ursache ist, dass ihr „neues“ Atmungsorgan – die Lunge – aus dem sauerstoffverbrauchenden Organ Schwimmblase hervorgeht.
    • Bei den gleichwarmen (homoiothermen) Tieren, den Vögeln und Säugetieren, besteht das Herz aus zwei Vorhöfen und zwei Kammern, so dass eine vollständige Trennung von sauerstoffreichem und sauerstoffarmem Blut besteht.

Allgemeines zum geschlossenen Blutkreislauf

Aufbau

Der Blutkreislauf besteht aus dem Herzen und den Blutgefäßen. Blutgefäße, die zum Herzen führen, werden als Venen bezeichnet, diejenigen, die vom Herz wegführen, als Arterien. Je weiter die Blutgefäße vom Herzen entfernt sind, umso verzweigter werden sie, und umso kleiner wird auch ihr Durchmesser. Arterien werden zuerst zu Arteriolen und diese zu Kapillaren, welche das Gewebe versorgen. Diese führen wiederum zusammen und bilden die postkapillaren Venolen, die zu Venen werden.

Blutgefäße

Blutgefäße werden aufgrund ihres Aufbaus und ihrer Funktion in mehrere Arten unterteilt. Die Arterien transportieren das Blut unter hohem Druck und mit hoher Fließgeschwindigkeit, deswegen besitzen sie eine dicke Gefäßwand. Durch sie gelangt das Blut aus dem Herzen in die verschiedenen Gewebe. Von den Arterien gehen die Arteriolen ab, sie dienen als Kontrollventile, und haben deswegen starke muskuläre Wände, die die Gefäße verschließen (Vasokonstriktion) oder weiten (Vasodilatation) können. Sie verzweigen sich weiter zu den Kapillaren, die den Austausch von Flüssigkeiten, Nährstoffen, Elektrolyten, Hormonen und anderen Stoffen zwischen Blut und Gewebe vornehmen und deswegen mit einer dünnen Gefäßwand (nur Endothel) ausgestattet sind, die für geringmolekulare Stoffe durchlässig (semipermeabel) ist. In einigen Organen (Leber, Milz) sind die Kapillaren erweitert, dann spricht man von Sinusoiden.

Venolen haben nur eine dünne Gefäßwand. Sie sammeln das Blut aus den Kapillaren, um es wieder den Venen zuzuführen, die es von der Peripherie zurück zum Herzen transportieren. Weiterhin dienen sie als Blutspeicher. Sie haben dünne, muskuläre Wände, die das Weiten oder Verschließen der Gefäße erlauben. Ein Teil der Flüssigkeit tritt im Kapillargebiet aus den Gefäßen aus und wird über Lymphgefäße abtransportiert. Die großen Lymphsammelstämme münden nahe dem Herzen wieder in das Venensystem.

Benachbarte Blutgefäße mit gleichem Zielgebiet werden als Kollateralen bezeichnet. In fast allen Körperregionen gibt es Verbindungen zwischen diesen benachbarten Blutgefäßen, sogenannte Anastomosen. Diese sorgen dafür, dass bei einer Verlegung (etwa einer Thrombose) oder Verletzung eines Blutgefäßes die Versorgung durch das Nachbargefäß übernommen werden kann. Arterien, die keine Anastomosen aufweisen, nennt man Endarterien. Kommt es zu einer Verlegung einer Endarterie, so wird der entsprechende Gewebsabschnitt nicht mehr mit Blut versorgt und stirbt ab (Infarkt). Die Anastomosen können aber auch zu schwach sein, um eine vollständige Kompensation eines Ausfalls zu ermöglichen. In diesem Fall spricht man von funktionellen Endarterien. Eine Verstopfung oder Verletzung dieser Arterien führt zu einer Minderdurchblutung (Ischämie).

Aufgaben und Funktionen

Blut erfüllt im Körper verschiedene Aufgaben. Es transportiert Sauerstoff aus den Lungen zum Gewebe und Kohlenstoffdioxid zurück. Weiterhin wird das Gewebe mit Nährstoffen aus dem Verdauungstrakt versorgt und von entstandenen Stoffwechsel- und Abfallprodukten befreit, die zu den Ausscheidungsorganen (Niere und Darm) transportiert werden. Blut dient zudem als wichtiges Medium für den Transport von Hormonen zwischen einzelnen Organsystemen und Komponenten der Immunabwehr und der Blutgerinnung zu Orten im Körper, an denen sie gebraucht werden.

Der Blutkreislauf dient demzufolge letztendlich dazu, dem Blut zu ermöglichen, sich durch den gesamten Körper zu bewegen. Weiterhin spielt der Blutkreislauf eine wichtige Rolle bei der Thermoregulation. Über den Grad der Durchblutung der Haut wird die Wärmeabgabe über die Körperoberfläche reguliert.

Blutkreislauf der wechselwarmen Wirbeltiere

Siehe auch: Herz und Herzen der Wirbeltiere

Fische

Schematische Darstellung des Blutkreislaufs der Fische:
rot = sauerstoffreiches Blut
blau = sauerstoffarmes Blut

Das Herz der Fische ist das am einfachsten gebaute unter den Wirbeltieren. Es besteht aus vier Räumen, zwei einleitenden dünnwandigen, Sinus venosus und Vorhof, einer dickwandigen, muskulösen Kammer und dem abschließenden Bulbus oder Conus arteriosus.[2] Zwischen Vorhof und Kammer befindet sich eine Klappe, die einen Rückstrom des Blutes verhindert. Ebenso wie das Herz ist auch der Blutkreislauf selbst relativ einfach strukturiert. Das venöse Blut wird aus dem Herzen in die Kiemen gepumpt (Kiemenkreislauf), in denen es mit Sauerstoff aus dem Wasser angereichert wird. Anschließend wird das sauerstoffreiche Blut in den Körperkreislauf weitertransportiert. In den Kapillaren gibt es den Sauerstoff ab und nimmt dafür Kohlendioxid auf. Neben dem Herz nimmt auch die Muskulatur der Kiemen am Pumpvorgang teil. Der Nachteil dieser Konstruktion ist, dass der Blutdruck im Kapillarnetz des Kiemenkreislaufs stark abfällt, der Blutstrom durch den Körper also relativ langsam ist. Zudem haben Fische ein geringes Blutvolumen. Es macht weniger als ein Zehntel des Körpergewichts aus. Außerdem liegt der Sauerstoffgehalt im Blut eines Fisches weit unter dem des menschlichen Blutes.

Amphibien

Doppelter Kreislauf

Schematische Darstellung des Blutkreislaufs der Amphibien:
rot = sauerstoffreiches Blut
blau = sauerstoffarmes Blut
rosa = Mischblut

Bei den Amphibien (Lurchen) besteht das Herz aus einer Kammer und zwei Vorhöfen. Der Gasaustausch findet sowohl in der Lunge als auch in der Haut statt. Die beiden Kreisläufe der Amphibien werden daher als Lungen-Haut-Kreislauf und Körperkreislauf bezeichnet. Da sie, im Gegensatz zu Fischen, nicht hintereinander geschaltet sind, spricht man von einem doppelten Kreislauf.

Der linke Vorhof empfängt mit Sauerstoff angereichertes Blut aus der Lunge, der rechte Vorhof eine Mischung von sauerstoffarmem Blut aus dem Körper und sauerstoffreichem Blut aus der Haut.[2] Beide Vorhöfe pumpen das Blut in die einheitliche Kammer. Diese Kammer besitzt einen Ausflusstrakt (Truncus oder Conus arteriosus), der sich in jeweils einen Stamm für die beiden Kreisläufe teilt. Eine leistenartige Erhebung im Ventrikel und im Lumen des Ausflusstrakts sorgt dafür, dass das Blut relativ „sortenrein“ durch das Herz fließt, das Blut aus den beiden Vorhöfen sich also nur wenig vermischt. Das sauerstoffreichere Blut wird zum überwiegenden Teil in die Halsschlagadern und die Aorta gepumpt, während das sauerstoffärmere Blut in die Lungen-Haut-Arterie gelenkt wird. Wie Reptilien und Vögel besitzen die Amphibien bereits einen Nierenpfortaderkreislauf.

Entwicklung

Amphibien haben ursprünglich vier paarige Kiemenbogenarterien, die zu beiden Seiten aus der Aorta entspringen. Bei ausgewachsenen Lurchen entwickelt sich die erste zur Arteria carotis, die den Kopf versorgt. Die Arterien des zweiten Bogens vereinigen sich zur Aorta descendens, der absteigenden Aorta. Die dritte Kiemenbogenarterie bildet sich zurück, und aus den vierten entwickelt sich der paarige Aortenbogen.

Reptilien

Schematische Darstellung des Blutkreislaufs der Reptilien:
rot = sauerstoffreiches Blut
blau = sauerstoffarmes Blut
rosa = Mischblut

Die zu den Reptilien zusammengefassten Taxa besitzen ein Herz, das ebenso aus zwei Vorhöfen und einer Kammer besteht. Diese ist jedoch nahezu vollständig durch eine Scheidewand in zwei Hälften geteilt. Aus dem Körper strömt sauerstoffarmes Blut in den rechten Vorhof, aus den Lungen mit Sauerstoff angereichertes Blut fließt in den linken Vorhof. Beide Vorhöfe pumpen das Blut in die Herzkammer, aus der drei Schlagadern abgehen. In der rechten fließt sauerstoffarmes Blut zur Lunge, in der linken sauerstoffreiches Blut zum Kopf und in den Körper. Da die Trennung der Herzkammer jedoch nicht vollständig ist, kommt es zur Bildung von Mischblut (circa 10 bis 40 Prozent). Dieses fließt durch die mittlere Schlagader in den Körper.

Eine Besonderheit stellen die Krokodile dar, bei ihnen sind die beiden Herzkammern komplett getrennt. Zwischen der linken und der rechten Schlagader besteht bei ihnen mit dem Foramen Panizzae eine Verbindung. Dabei entspringt die linke Aorta an der rechten Herzkammer und die rechte an der linken. Durch das Fenster vermischt sich das sauerstoffreiche Blut der rechten Kammer mit dem sauerstoffarmen der linken Kammer im Bereich der rechten Aorta, so dass Mischblut in den Körperkreislauf geführt wird und dabei vor allem in die peripheren Bereiche des Körpers gelangt. Zugleich fördert die linke Aorta sauerstoffreiches Blut in den Körper und vor allem in den Kopf des Tieres. Beim Tauchvorgang schließt sich das Foramen Panizzae vollständig, so dass die rechte Aorta nur noch mit sauerstoffarmem Blut versorgt wird, der Kopf jedoch weiterhin sauerstoffreiches Blut bekommt.

Auch bei den Dinosauriern lag vermutlich eine vollständige Trennung der Herzkammern vor, was sie zu quasi-gleichwarmen Tieren machen würde und somit deren langes Überleben erklären könnte (siehe Thermoregulation). Dies ergibt sich aufgrund ihrer Position im Stammbaum zwischen den Krokodilen und den Vögeln, die beide eine durchgängige Trennwand im Herzen besitzen.

Blutkreislauf der gleichwarmen Wirbeltiere

Anatomie

Schematischer Aufbau eines doppelten Blutkreislaufs:
rot = sauerstoffreiches Blut
blau = sauerstoffarmes Blut

Im Gegensatz zu den wechselwarmen Tieren ist das Herz der gleichwarmen Tiere, also auch das des Menschen, vollständig in vier Räume geteilt. Deshalb kann es als in zwei Hälften geteilt betrachtet werden, obwohl es sich im gesamten um ein einziges Organ handelt. Jede dieser Hälften besteht aus einem Vorhof und einer Kammer, die jeweils als Einheit arbeiten. Während die rechte Herzhälfte das Blut durch den Lungenkreislauf pumpt, der das Blut mit Sauerstoff anreichert, pumpt die linke Herzhälfte das Blut durch den Körperkreislauf, um die Organe mit Nährstoffen und Sauerstoff zu versorgen.

Diese beiden Kreisläufe sind in Reihe geschaltet, so dass das gesamte Blut immer durch den Lungenkreislauf fließen muss. Im Unterschied dazu sind die Organe im Körperkreislauf parallel geschaltet.

Die Existenz zweier Blutkreisläufe (Körper- und Lungenkreislauf) hat wichtige Vorteile:

  • Der Druck kann in beiden Kreisläufen unterschiedlich sein. Im Lungenkreislauf ist er erheblich niedriger, so dass eine geringere Wanddicke in den Lungen einen besseren Gasaustausch ermöglicht.
  • Die Lunge mit ihren Kapillaren funktioniert als Filter gegen Blutgerinnsel (Thromben) u. ä., bevor das Blut von der linken Herzseite unter anderem zum Gehirn gepumpt wird. Die Lunge hat dazu thrombenlösende Eigenschaften.

Im Lungenkreislauf verlässt das Blut die rechte Herzkammer über den Lungenstamm (lat. Truncus pulmonalis) in Richtung der Lungen, wo es mit Sauerstoff angereichert wird. Dann wird es von der Lungenvene (lat. Vena pulmonalis ) in den linken Herzvorhof gepumpt. Vom linken Vorhof gelangt es in die linke Kammer, von wo aus es durch die Aorta in den Körperkreislauf gepumpt wird. Während bei den Säugern die Aorta auf der linken Körperseite verläuft, liegt sie bei Vögeln auf der rechten. Nach der Versorgung der Organe kehrt das nun mit Kohlendioxid angereicherte Blut durch die obere bzw. die untere Hohlvene in den rechten Vorhof zurück. Mit dem Übergang vom rechten Vorhof in die rechte Kammer beginnt der Kreislauf von neuem.

Eine Besonderheit stellt das Pfortadersystem dar. Blut, das von den Organen des Verdauungstrakts kommt, wird in der Pfortader gesammelt und gelangt in die Leber, wo die aufgenommenen Nährstoffe verwertet werden. Auch die Hirnanhangsdrüse (Hypophyse) hat ein Pfortadersystem. Vögel und Reptilien haben zudem eine Nierenpfortader.

Blutdruck und -volumen

Man unterscheidet zwischen dem genannten Niederdruck- und dem Hochdrucksystem. Zum Niederdrucksystem gehören die Arteriolen, Kapillaren und Venen des Körperkreislaufs, das rechte Herz und die Gefäße des Lungenkreislaufs. Zum Hochdrucksystem gehören die Arterien des Körperkreislaufs und das linke Herz.

Die Hauptaufgabe des Niederdrucksystems ist seine Blutspeicherfunktion, denn 80 Prozent des im Körper zirkulierenden Blutes (etwa sieben Prozent der fettfreien Körpermasse, beim Menschen circa vier bis fünf Liter) findet man dort. Diese Funktion wird durch die hohe Dehnbarkeit und die große Kapazität der Gefäße begünstigt. Im Falle eines Blutverlustes kann das Volumen durch Verengung (Vasokonstriktion) der Venen bis zu einem gewissen Grad ausgeglichen werden. Im umgekehrten Fall, der zum Beispiel bei Bluttransfusionen auftritt, ändert sich hauptsächlich das Volumen des Niederdrucksystems. Deshalb ist im Normalfall der zentrale Venendruck (Normalwert etwa 4 bis 12 Hektopascal oder 3 bis 9 mmHg) ein guter Indikator für das Blutvolumen. Im Gegensatz dazu ist die Hauptaufgabe des Hochdrucksystems die Versorgung der Organe.

Der Blutdruck ist im Verlauf des Systems großen Änderungen unterworfen. Beträgt er noch in der Aorta und den großen Arterien etwa 130 hPa (100 mmHg), fällt er in den Arterienästen auf 50 hPa (40 mmHg) ab, und beträgt in den Kapillaren nur noch 33 hPa (25 mmHg). In den Venolen beträgt er 27 hPa (20 mmHg), in den Pfortadern letztendlich nur noch 4 hPa (3 mmHg). Im Lungenkreislauf schwankt der Druck zwischen 20 und 27 hPa (15–20 mmHg) in der Arteria pulmonalis und zwischen 2,7 und 6,5 hPa (2–5 mmHg) in der Vena pulmonalis.

Spricht man umgangssprachlich vom Blutdruck, so meint man den Blutdruck der Arterien im Körperkreislauf. Dieser schwankt zwischen Systole (der Auswurfphase des Herzens) und Diastole (der Füllungsphase), und wird als Doppelwert dieser beiden Phasen angegeben. Dabei wird zuerst der systolische und dann der diastolische Wert genannt. Durchschnittlich liegen diese Werte für die Systole zwischen 130 und 190 hPa (100–140 mmHg) und für die Diastole zwischen 80 und 120 hPa (60–90 mmHg). Der Unterschied zwischen dem systolischen und dem diastolischen Blutdruck wird als Blutdruckamplitude bezeichnet.

Blutfluss

Trotz der großen Druckunterschiede zwischen Systole und Diastole fließt das Blut relativ gleichmäßig durch den Körper. Dies liegt an der sogenannten Windkesselfunktion der Aorta und der großen Arterien. Während der Systole dehnt sich die Gefäßwand aus und nimmt so einen Teil des ausgeworfenen Blutes auf – und gibt ihn in der Diastole, in der kein Blut aus dem Herzen austritt, wieder ab. Diese Volumendehnbarkeit (Compliance) wandelt also das stoßweise austretende Blut in einen gleichmäßigen Strom um. Würde der Druck nicht durch die elastischen Gefäße gespeichert werden können, so würde der Druck in der Aorta wesentlich dramatischer schwanken. Interessanterweise würde im zeitlichen Mittel aber wesentlich weniger Blut durch die Gefäße strömen, da viel Strömungsenergie für das ständige Beschleunigen des Blutes aufgezehrt würde.

Die Druckwelle bewegt sich beim jungen, erwachsenen Menschen mit etwa 6 Meter pro Sekunde, beim alten Menschen verdoppelt sich die Geschwindigkeit. Da mit zunehmendem Lebensalter die Gefäßwände immer unelastischer werden, vermindert sich der Druckspeichereffekt mit dem Lebensalter immer mehr und der Volumenstrom reduziert sich.

Während der Blutfluss in den Arterien allein von der Pumpkraft des Herzens realisiert wird, spielen bei Venen verschiedene Faktoren eine Rolle. Zu einem gewissen Grad wirkt die Pumpkraft über das Kapillarbett hinaus auch auf die Venen (sog. vis a tergo, „Kraft von hinten“). In den Venen wird das Blut vor allem schubweise über von außen wirkende Kräfte zurück zum Herz transportiert. Zu diesem Zweck befinden sich in ihrem Inneren Venenklappen. Die äußeren Kräfte sind vor allem die Kontraktionen umliegender Skelettmuskeln, bei den großen Venen im Körperinneren die Druckschwankungen durch die Atmung (Erweiterung der Venen durch den Unterdruck bei der Inspiration). Die Venenklappen verhindern, dass in den Pausen dieser äußeren Massagewirkung das Blut nicht wieder der Schwerkraft folgend zurückfließt. Der Ansaugdruck durch die Erweiterung der Vorhöfe des Herzens spielt nur bei den herznahen großen Venen eine Rolle.

Regulation

Unabhängig von Umgebungs- und Belastungsbedingungen muss die Blutversorgung zu jedem Zeitpunkt aufrechterhalten bleiben. Es muss sichergestellt werden, dass Herzaktion und Blutdruck immer bestmöglich reguliert werden, alle Organe ein Mindestmaß an Blut erhalten und der Blutstrom entsprechend den Bedürfnissen von den ruhenden hin zu den aktiven Organen verteilt wird, da eine Maximalversorgung aller Organe zur gleichen Zeit nicht möglich ist. Würden alle Organe gleichzeitig maximalversorgt werden, so würde der Blutdruck stark abfallen und zum Schock führen, weil die Gesamtblutmenge dafür nicht ausreicht.

Der Körperkreislauf besteht daher aus vielen parallel geschalteten Kreisläufen, die je nach Aktivität zu- oder abgeschaltet werden können. So wird etwa nach der Nahrungsaufnahme der Verdauungsapparat vorrangig versorgt, andere Organsysteme werden gedrosselt, Hochleistungssport ist dann nicht möglich. Die Realisierung dieser Zu- und Abschaltungen erfolgt über mehrere Wege:

  • Die Gefäßweite (das Lumen) der Arterien wird durch den Spannungszustand (Tonus) der glatten Muskulatur in der Gefäßwand gesteuert. Sind die Gefäße erweitert, fließt mehr Blut in das entsprechende Gebiet.
  • Arteriovenöse Anastomosen: Anastomosen sind Verbindungen zwischen kleineren Blutgefäßen, in diesem Fall zwischen Arterie und zugehöriger Vene. Diese arteriovenösen Anastomosen sind verschließbar, in diesem Fall nimmt das Blut den gewohnten Weg durch die Kapillaren. Öffnen sich diese Verbindungen, so strömt ein Großteil des Blutes aufgrund des geringeren Strömungswiderstandes von der Arterie durch die Abkürzung direkt in die Vene, das Kapillarbett bekommt also weniger Blut.
  • Vorkapillare Schließmuskeln: Normale Arterien können zwar ihr Lumen verengen, aber nicht bis zu einem vollständigen Verschluss. In den kleinsten Arteriolen gibt es dagegen spezielle Bildungen der mittleren Wandschicht, die als Sphincter praecapillaris bezeichnet werden. Diese können das Lumen verschließen und somit den Blutfluss im sich anschließenden Kapillarbett reduzieren.
  • Sperrarterien: Sperrarterien sind Arterien, die ebenfalls ihr Lumen verschließen können. Solche Sperrarterien gibt es am Penisschwellkörper. Sie sind normalerweise geschlossen und erst ihre Öffnung löst einen Blutfluss und damit die Schwellkörperfüllung (Erektion) aus.
  • Drosselvenen: Drosselvenen sind Venen, die ihr Lumen einengen können. Sie kommen vor allem in der Schleimhaut des Darmes vor. Bei einer Einengung wird der Blutabfluss aus dem Darm verlangsamt und damit die Blutmenge vergrößert und die Zeit zum Übertritt der resorbierten Nährstoffe in das Blut verlängert. Außerdem sind sie im Nebennierenmark zu finden.

Kreislaufregulatorische Einrichtungen werden durch

Lokale Steuerung

Die lokale Steuerung oder auch Autoregulation stellt zum einen das Gleichbleiben der Organdurchblutung auch bei wechselndem Blutdruck sicher, zum anderen passt sie die Durchblutung den Stoffwechselbedingungen des Organs an (zum Beispiel steigt die Durchblutung des Magen-Darm-Traktes während der Verdauung). Dies findet auf unterschiedlichen Wegen statt.

  • Beim Bayliss-Effekt findet eine Kontraktion der Gefäßmuskulatur als Antwort auf eine Gefäßweitung durch eine Blutdruckerhöhung statt. Er tritt in Gehirn, Niere und Verdauungstrakt auf, nicht aber in der Haut oder der Lunge.
  • Sauerstoffmangel löst eine Gefäßweitung aus, die daraus resultierende Mehrversorgung mit Blut wirkt diesem entgegen. (In der Lunge findet das genaue Gegenteil statt, eine geringe Sauerstoffsättigung hat eine Gefäßverengung zur Folge.)
  • Außerdem löst das Vorkommen gewisser Stoffe im Blut lokal eine Gefäßweitung aus. Dieser lokal-metabolische Effekt wird besonders durch eine erhöhte Konzentration von Kohlendioxid, ADP, AMP, Adenosin, Wasserstoff- und Kalium-Ionen hervorgerufen. Die daraus resultierende bessere Durchblutung begünstigt den Abtransport dieser Stoffe. Besonders wichtig ist diese Art der Steuerung im Herzmuskel (Myokard) und im Gehirn.

Hormonale Steuerung

Hormone wirken entweder direkt auf die Muskulatur der Gefäßwand (z. B. Adrenalin), oder sie bewirken vor Ort die Freisetzung von gefäßaktiven Substanzen (z. B. Stickstoffmonoxid, Endothelin), die dann lokal wirksam werden.

  • Stickstoffmonoxid (NO) hat eine gefäßerweiternde Wirkung. Es wird aus dem Endothel (der Gefäßwand auskleidenden Zellschicht) ausgeschüttet, wenn diese durch Acetylcholin, ATP, Endothelin-1 oder Histamin stimuliert wird.
  • Endothelin-1 stimuliert zum einen die Freisetzung von NO, zum anderen wirkt es lokal direkt auf die Gefäßmuskulatur, dann aber gefäßverengend. Es wird vom Endothel nach Stimulation durch Angiotensin II und Vasopressin (Antidiuretisches Hormon) freigesetzt.
  • Adrenalin wirkt je nach vor Ort überwiegenden Rezeptoren gefäßverengend (α1-Adrenorezeptoren, zum Beispiel in Haut und Niere) oder gefäßweitend (β2-Adrenorezeptoren, zum Beispiel in Skelettmuskel, Myokard und Leber). β-Rezeptoren sind empfindlicher als α-Rezeptoren, werden aber beide Rezeptoren gleichzeitig ausgelöst so dominieren die α-Rezeptoren.
  • Eikosanoide haben unterschiedliche Effekte auf die Gefäße. Während Prostaglandin F2 und Thromboxane A2 und B2 gefäßverengend wirken, haben Prostaglandin-E2 und Prostacyclin gefäßerweiternde Wirkungen.
  • Bradykinin, Kallidin und Histamin wirken gefäßerweiternd. Außerdem setzt die Stimulation des Endothels durch Bradykinin den EDHF (endothel-derived hyperpolarizing factor, hyperpolarisierender Faktor des Endothels) frei, der Gefäßmuskelzellen hyperpolarisiert.
  • Serotonin bewirkt eine Gefäßverengung, und erhöht außerdem die Durchlässigkeit der Kapillaren.
  • Angiotensin II wirkt innerhalb des Renin-Angiotensin-Aldosteron-Systems gefäßverengend, ebenso Vasopressin. Diese Gefäßverengung findet im Rahmen der Regulation des Wasserhaushalts durch die Niere statt.

Neuronale Steuerung

Die neuronale Steuerung findet hauptsächlich durch den Sympathikus statt, und setzt an den kleinen Arterien und den Arteriolen oder den Venen und deren Rückstrom zum Herzen an. Der postganglionäre Neurotransmitter ist das Noradrenalin, das an die α1-Rezeptoren anbindet, und deswegen gefäßverengend wirkt. Eine Gefäßweitung wird durch Nachlassen des Sympathikotonus erreicht. Ausgenommen hiervon ist die vom Parasympathikus angeregte Weitung der Gefäße der Speicheldrüsen und der Geschlechtsorgane (Erektion). Als Transmitter wirken NO und Bradykinin. Die Steuerung durch Sympathikus und Parasympathikus findet auf zwei Arten statt: zum einen über eine Art Bedarfsmeldung der Organe, zum anderen durch eine neuronale Mitinnervation, bei der das Gehirn neben der Aktivierung bestimmter Organe gleichzeitig deren Durchblutung steuert. Durch eine Verletzung von Nerven oder deren Fehlfunktion kann es zu einem spinalen oder neurogenen Schock kommen.

Zentrale Kreislaufsteuerung

Neben der Einflussnahme auf den Tonus der Gefäße findet auch noch eine zentrale Kreislaufsteuerung in der Medulla oblongata und dem Pons statt. Dabei werden Informationen von Kreislaufsensoren ausgewertet, die den arteriellen Blutdruck, die Pulsfrequenz, den Füllungsdruck des Niederdrucksystems und den pH-Wert, Kohlendioxid- und Sauerstoff-Partialdruck des Blutes messen.

Diese Drucksensoren befinden sich in der Wand der Aorta und der inneren Halsschlagader (Dehnungs- und Druckrezeptoren im Sinus caroticus) und im Niederdrucksystem in den Hohlvenen und den Vorhöfen (Dehnungssensoren). Diese Regulation wirkt aber nur akuten Blutdruckänderungen entgegen, wie zum Beispiel beim Aufstehen aus dem Liegen. Ist der Blutdruck jedoch immer auf einem erhöhten (oder erniedrigten) Niveau, so erfolgt eine Anpassung und der „neue“ Blutdruck wird gleich gehalten.

Die Gaspartialdrücke und der pH-Wert werden von spezialisierten Sensoren (sog. Chemorezeptoren) in Paraganglien erfasst, die ebenfalls an der Halsschlagader (Glomus caroticum), der Aorta (Paraganglion supracardiale, Syn. Glomus aorticum) und der Lungenarterie liegen.

Die Informationen dieser Sensoren werden an das Kreislaufzentrum im Nachhirn (Medulla oblongata) übermittelt.

Lymphsystem

Das Lymphsystem dient dazu, Wasser und darin gelöste Stoffe aus dem Körpergewebe wieder dem Blutkreislauf zuzuführen. In Umgebung der Kapillaren wird das Gewebe aufgrund des osmotischen Drucks von Flüssigkeit aus dem Blut durchtränkt. Am Ende kehrt diese Flüssigkeit wieder in die Blutgefäße zurück. Da dieser Prozess aber nicht hundertprozentig effektiv ist, sammeln Lymphbahnen diese Flüssigkeit, jetzt Lymphe genannt, und führen sie den Venen in der Nähe des Herzens wieder zu. Auf dem Weg dorthin fließt die Lymphe durch Lymphknoten, in denen sie gefiltert wird.

Der Blutkreislauf der Säugetiere vor der Geburt

Entwicklung beim Embryo

Der Blutkreislauf ist eines der am frühesten angelegten Organsysteme des Embryos. Die Blutgefäße entwickeln sich, vom Dottersack ausgehend, aus sogenannten „Blutinseln“ im embryonalen Bindegewebe. Durch die Verschmelzung der beiden Endokardschläuche am Kopfende des Embryos, verschiedene Krümmungsvorgänge und Bildung von Scheidewänden entsteht daraus das Herz mit seinen beiden Vorhöfen und Herzkammern. Das Herz gelangt erst mit dem Längenwachstum des Embryos in seine definitive Lage in der Brusthöhle.

In der Frühphase der Entwicklung des Blutkreislaufes gibt es im vorderen Bereich des Embryos zunächst vier Aorten, zwei rückenseitige (dorsale Aorten) und zwei bauchseitige (ventrale Aorten). Die dorsalen Aorten besitzen pro embryonalen Körpersegment jeweils Abgänge nach dorsal (rückenwärts) und ventral (bauchwärts), im Bereich der Urniere auch nach lateral (seitlich), die als Segmentarterien bezeichnet werden. Die Dorso- und Ventralaorten sind im Bereich der Kiemenbogen untereinander durch die sechs Kiemenbogenarterienpaare miteinander verbunden.

Nun finden im vorderen Embryonalbereich komplexe Umbildungen statt. Die ersten fünf lateralen Segmentarterien sowie die erste, zweite und fünfte Kiemenbogenarterie verschließen sich beidseitig, die dorsalen Aorten zwischen viertem und fünftem Kiemenbogen. Der Vorderabschnitt der ventralen Aorten wird damit zur definitiven äußeren Halsschlagader (Arteria carotis externa), aus der dritten Kiemenbogenarterie und dem Vorderabschnitt der dorsalen Aorten beidseitig die innere Halsschlagader (Arteria carotis interna).

Die rechte dorsale Aorta verschließt sich hinter der sechsten lateralen Segmentarterie und wird zusammen mit der vierten rechten Kiemenbogenarterie zur späteren rechten Schlüsselbeinarterie (Arteria subclavia dextra). Die linke Schlüsselbeinarterie entsteht dagegen nur aus der sechsten lateralen Segmentarterie.

Die vierte linke Kiemenbogenarterie entwickelt zum Aortenbogen (Arcus aortae), die definitive Aorta entsteht aus dessen Fortsetzung in die linke ventrale Aorta. Der Anfangsabschnitt der rechten ventralen Aorta bildet sich zum Arm-Kopf-Stamm (Truncus brachiocephalicus) um.

Die beiden sechsten Kiemenbogenarterien wachsen in die Lungenanlage ein und werden zu den Lungenarterien (Arteriae pulmonales). Rechts verliert sie ihre Verbindung zur ventralen Aorta, aus ihrem Anfangsabschnitt entsteht der Lungenstamm (Truncus pulmonalis). Die sechste linke Kiemenbogenarterie erhält jedoch ihre Verbindung zur linken ventralen, also definitiven Aorta bei. Sie bildet damit eine Kurzschlussverbindung zwischen Lungen- und Körperkreislauf, den Ductus arteriosus (Ductus Botalli). Durch die Bildung eines spiraligen Septums (Septum aorticopulmonale) im Ursprung des unpaarigen Anfangsabschnitts der dorsalen Aorten erhält die definitive Aorta Anschluss an die linke Herzkammer, der Truncus pulmonalis an die rechte Herzkammer. Diese sehr komplizierten Umbauvorgänge des Herzens und der herznahen Arterien führen gelegentlich zu Missbildungen (z. B. Fallot-Trilogie, Fallot-Tetralogie, Fallot-Pentalogie).

Die ursprünglichen ventralen Segmentarterien der nun definitiven Aorta bilden sich bis auf drei unpaare Hauptstämme (Truncus coeliacus, Arteria mesenterica superior und Arteria mesenterica inferior) in der Bauchhöhle zurück. Die lateralen Segmentarterien werden zu den Nieren- (Arteria renalis) und Keimdrüsenarterien (Arteria testicularis bzw. Arteria ovarica). Lediglich die dorsalen Segmentarterien behalten ihr ursprüngliches segmentales Abgangsverhalten und bilden die Zwischenrippenarterien (Arteriae intercostales superiores) bzw. Lendenarterien (Arteriae lumbales).

Blutkreislauf beim Fötus

Blutkreislauf eines menschlichen Fötus

Etwa ab dem 21. Tag nach der Konzeption (ca. 35. Tag nach dem ersten Tag der letzten Regelblutung – gynäkologische Schwangerschaftsrechnung) beginnt das Herz des Embryos zu schlagen, in den folgenden Wochen wird auch die Lunge angelegt. Da die Lungen des Fötus im Mutterleib noch funktionslos sind, bezieht er sein sauerstoffreiches Blut über die Nabelschnur aus der Plazenta. Das sauerstoffreiche Blut gelangt aus der Nabelvene in der Nabelschnur über den Ductus venosus in die untere Hohlvene und umgeht damit zum Großteil die Leber, ein kleinerer Teil versorgt über die Pfortader die Leber mit sauerstoffreichem Blut. Dann gelangt es durch die untere Hohlvene in den rechten Vorhof. Schon in der Hohlvene mischt es sich mit dem sauerstoffarmen Blut aus dem Körperkreislauf und wird zu Mischblut. Ein Teil strömt durch das Foramen ovale in den linken Vorhof, wird in die linke Herzkammer gepumpt und verlässt das Herz durch die Aorta, um zuerst das Gehirn, das am empfindlichsten auf Sauerstoffmangel reagiert, und den oberen Teil des Körpers zu versorgen. Aus der rechten Kammer gelangt das übrige Blut in den Truncus pulmonalis, ein Teil (etwa ein Drittel) wird in die noch nicht entfalteten Lungen gepumpt. Durch die geringe Sauerstoffversorgung der Lunge sind die Lungengefäße verengt, was den Fließwiderstand erhöht. Die restlichen zwei Drittel des sauerstoffangereicherten Blutes gelangen vom Truncus pulmonalis noch vor der Lunge über den Ductus arteriosus in die Aorta (Rechts-Links-Shunt) hinter den Abgängen zum Gehirn und umgehen damit ebenfalls den Lungenkreislauf. Dieses Mischblut versorgt den unteren Teil des Körpers, bis der größte Teil über die von den inneren Beckenarterien abgehenden Nabelarterien wieder in die Plazenta fließt, wo er mit Sauerstoff angereichert wird.

Umbildungen nach der Geburt

Bei der Geburt endet die Versorgung durch die Plazenta. Dies lässt den Kohlendioxidgehalt im Blut ansteigen, was durch Chemorezeptoren einen starken Anreiz zum Atmen erzeugt. Durch das Heben des Brustkorbs sinkt der Druck innerhalb des Brustkorbes. Dies führt zum Leersaugen von Plazenta und Nabelvene und zur Entfaltung der Lungen. Da diese nun das Blut mit Sauerstoff anreichern, weiten sich die Gefäße in der Lunge, was den Gefäßwiderstand reduziert. Deshalb gelangt mehr Blut in die Lungen, die Flussrichtung im Ductus arteriosus kehrt sich um. Bis zu dessen Schließung wird die Lunge noch kurze Zeit mit Aortenblut versorgt. Nach dem Verschluss wird der Ductus arteriosus zum Ligamentum arteriosum. Während die Blutmenge im rechten Vorhof durch den Wegfall des Zuflusses aus der Plazenta abnimmt, steigt sie im linken Vorhof durch die Versorgung der Lunge. Das resultierende Druckgefälle und die Verringerung gefäßverengender Prostaglandine führen dazu, dass sich das Foramen ovale ebenfalls innerhalb der ersten zwei Wochen nach der Geburt verschließt. Ebenso verschließt sich der Ductus venosus.

Krankheiten des Kreislaufsystems

Herz-Kreislauf-Erkrankungen führen heute in den Industrienationen die Todesursachenstatistik mit Abstand an. In Deutschland wird mit leicht abfallender Tendenz knapp die Hälfte aller Todesfälle auf Krankheiten des Kreislaufsystems zurückgeführt.

Während bei Kindern und jungen Erwachsenen Herz-Kreislauf-Erkrankungen selten sind und die angeborenen Herzfehler im Vordergrund stehen, führt hauptsächlich die mit dem Alter zunehmende Arteriosklerose zu einem altersabhängigen Anstieg der Prävalenz für Herzinfarkte, Schlaganfälle und andere Durchblutungsstörungen. Unter den Herzerkrankungen (vgl. Kardiologie) sind Durchblutungsstörungen des Herzmuskels (Koronare Herzkrankheit) und Herzklappenfehler am häufigsten anzutreffen, bei den Gefäßerkrankungen (vgl. Angiologie) sind es die arterielle Verschlusskrankheit (AVK) der Arterien und das Krampfaderleiden (Varikose) sowie die Thrombose bei den Venen. Der Bluthochdruck (arterielle Hypertonie) gehört zu den häufigsten chronischen Erkrankungen. Er ist die zweithäufigste Diagnose bei Hausärzten und gilt als bedeutsamster Risikofaktor für Herz-Kreislauf- und Nierenerkrankungen.

Forschungsgeschichte

Schon eine Schrift des Corpus Hippocraticum aus dem 4. Jahrhundert v. Chr. enthält Beschreibungen der Herzklappen.[3] Ihre Funktion wurde aber zu diesem Zeitpunkt noch nicht erkannt. Da sich Blut nach dem Tod in den Venen sammelt, erscheinen Arterien leer. Deswegen vermuteten antike Anatomen, dass sie mit Luft gefüllt seien und eine Rolle im Lufttransport spielen. Herophilos von Chalkedon unterschied bereits zwischen Venen und Arterien, glaubte aber, dass der Puls selbstständig durch Letztere erzeugt würde. Erasistratos beobachtete, dass am Lebenden durchtrennte Arterien bluten. Er vermutete, dass entweichende Luft durch aus kleinen Verbindungsadern zwischen Venen und Arterien nachströmendes Blut ersetzt wird. Somit war er der erste, der Kapillaren postulierte, aber mit entgegengesetztem Blutfluss.

Im 2. Jahrhundert wusste Galenos (129–199) bereits, dass Blutgefäße Blut transportieren und unterschied dunkleres venöses von arteriellem Blut, welches heller und dünner ist. Beiden schrieb er verschiedene Aufgaben zu. Wachstum und Energie kämen von in der Leber aus Galle gebildetem venösen Blut, während aus dem Herz kommendes, arterielles Blut Vitalität durch enthaltene Luft brachte. Das Blut floss laut seinen Vorstellungen aus beiden Organen in alle Teile des Körpers, wo es verbraucht wurde, ohne dass ein Rückstrom zu Herz oder Leber stattfand. Das Herz selbst hat keine Pumpfunktion, sondern saugt das Blut in der Diastole ein. Der Bluttransport selbst findet durch die Pulsierungen der Arterien statt. Galen glaubte, dass arterielles Blut aus venösem Blut gebildet wird, welches durch „Poren“ in der Scheidewand zwischen den Kammern aus der rechten in die linke Herzkammer sickert.

Im 13. Jahrhundert entdeckte Ibn an-Nafis, ein arabischer Arzt und Anatom (1210/1213–1288), als Erster, dass das Blut in einem Kreislauf durch die Lunge fließt. Seine Erkenntnisse, die als Zeichnungen bis in die heutige Zeit überliefert sind, gelangten jedoch nicht bis in den europäischen Raum. 1546[4] beschrieb Michael Servetus (1511–1553) dasselbe Phänomen wie Ibn an-Nafis, das durch Realdo Colombo bewiesen wurde. Doch auch diese Ergebnisse wurden von der Allgemeinheit nicht anerkannt.[5]

1628 wurde durch William Harvey (1578–1657) der Blutkreislauf erstmals korrekt beschrieben, nachdem für 14 Jahrhunderte die Lehre Galens die medizinische Lehrmeinung bestimmt hatte. Harvey stellte seine Überlegungen aufgrund der Entdeckung der hydraulischen Funktionsweise der Venenklappen durch seinen Lehrer, den Italiener Girolamo Fabrizio an, da er eine Verbindung zur Funktion des Herzens suchte. Er fand sie in der Kreislauftheorie, die er 1628 veröffentlichte. Diese Arbeit begann, die Fachwelt zu überzeugen. Wie das Blut vom arteriellen in den venösen Schenkel kommt, konnte allerdings erst Marcello Malpighi mit seiner Entdeckung der Kapillaren erklären.

Einzelnachweise

  1. Hochspringen Adolf Remane, Volker Storch, Ulrich Welsch: Kurzes Lehrbuch der Zoologie. 5. Auflage. Gustav Fischer Verlag, Stuttgart 1985, ISBN 3-437-20337-1, S. 188 f.
  2. Hochspringen nach: a b c Christopher D. Moyes, Patricia M. Schulte: Tierphysiologie. Pearson Studium, München 2008 (Originaltitel: Principles of Animal Physiology, übersetzt von Monika Niehaus, Sebastian Vogel), ISBN 978-3-8273-7270-3.
  3. Hochspringen Corpus Hippocraticum: De corde.
  4. Hochspringen Michael Servetus Research. Manuskript von Paris, ein Entwurf für Christianismi Wiedereinsetzung
  5. Hochspringen Im Jahre 1546 war es nur ein Manuskript. Miguel veröffentlicht diese im Jahre 1553, in Chiristianismi Wiedereinsetzung, aber alle seine Bücher wurden verbrannt. Nur drei Exemplare überlebt

Literatur

  • Neil A. Campbell, Jane B. Reece: Biologie. 6., aktualisierte Auflage. Pearson Studium, München u. a. 2006, ISBN 3-8273-7180-5.
  • Uwe Gille: Herz-Kreislauf- und Abwehrsystem, Angiologia. In: Franz-Viktor Salomon u. a. (Hrsg.): Anatomie für die Tiermedizin. 2., überarbeitete und erweiterte Auflage. Enke-Verlag, Stuttgart 2008, ISBN 978-3-8304-1075-1, S. 404–463.
  • J. R. Levick: Physiologie des Herz-Kreislauf-Systems. Barth Heidelberg u. a. 1998, ISBN 3-8252-8129-9 (UTB 8129).
  • Stefan Silbernagl, Agamemnon Despopoulos: Taschenatlas der Physiologie. Thieme, Stuttgart 2003, ISBN 3-13-567706-0.

Atemtrakt

Wechseln zu: Navigation, Suche
Das Atmungssystem besteht aus den Luftwegen, den Lungen und der Atemmuskulatur, die die Luft in den Körper und wieder hinaus befördern

Als Atemtrakt oder Atmungsapparat (Apparatus respiratorius) wird das gesamte System der für die Atmung zuständigen Organe bezeichnet. Dabei werden die luftleitenden Organe oder Atemwege von den dem Gasaustausch dienenden Lungen unterschieden.

Zum Atmungsapparat gehören

Das Bronchialsystem nimmt insofern eine Sonderstellung ein, als es flächenmäßig zwar den größten Teil der luftleitenden Wege ausmacht, es jedoch – mit Ausnahme der Hauptbronchien – als „Bronchialbaum“ in den Lungen eingebettet ist. Die in den Alveolarraum leitenden Hohlorgane besitzen drei Aufgaben, nämlich Partikel als Niederschlag zu filtern, die Atemluft anzuwärmen und anzufeuchten.

Das Luftvolumen, das sich in den Atemwegen befindet, wird auch als Totraum innerhalb des Gesamtvolumens der Ein- und Ausatmung bezeichnet, da es erst durch die Luftbewegungen (Vermischung, -wirbelung) auch am Gasaustausch in den Lungenbläschen teilhat.

Embryologie

Die Anlage der Lungen bildet sich beim Menschen bereits beim drei Wochen alten Embryo als eine Ausstülpung des Vorderdarms und stammt somit vom inneren Keimblatt (Entoderm) ab. In der 5. Schwangerschaftswoche ist diese Aussackung („Lungendivertikel“) vom Vorderdarm ganz durch eine Scheidewand (Septum oesophagotracheale) getrennt, eine offene Verbindung besteht dann nur noch im Bereich des späteren Kehlkopfs. Gleichzeitig mit dem Abschnüren vom Vorderdarm, der sich in seinem hinteren Anteil zur Speiseröhre entwickelt, wächst die Anlage des Atemtrakts nach hinten aus. Der Mittelabschnitt wird zur Luftröhre, die sich dann am Ende in die beiden Lungenknospen teilt.

Die Lungenknospen teilen sich rechts in drei Äste, links in zwei - die Anlagen der späteren Lappenbronchien, die sich in der Folge dichotom weiter teilen. Etwa 17 solcher Teilungen erfolgen bis zum Ende des sechsten Schwangerschaftsmonats, die weiteren 6 Teilungen erfolgen erst nach der Geburt. Das den Bronchialbaum umgebende Mesoderm entwickelt sich zu Knorpeln, glatten Muskelzellen und Blutgefäßen.

Die in die Leibeshöhle (Coelom) auswachsenden Lungenanlagen schieben die sie bedeckende Mesodermschicht vor sich her. Aus dieser Schicht entwickelt sich in der Folge das „Lungenfell“, die viszerale Pleura.

Die Lungenbläschen bilden sich an den Endverzweigungen der Lungenanlage im 7. Schwangerschaftsmonat, wobei sich die Zellen des Alveolarepithels direkt an das Epithel der benachbarten Kapillaren anlegen, um den späteren problemlosen Gasaustausch zu gewährleisten. Neben den Alveolarenzellen bilden sich auch sogenannte Nischenzellen, die Surfactant, eine oberflächenaktive Substanz, produzieren und so nach der Geburt das Kollabieren der Lungenbläschen verhindern. Eine mangelnde Produktion von Surfactant führt ohne Behandlung bei Frühgeborenen zum sogenannten Syndrom der hyalinen Membranen.

Bis zur Geburt sind die Lungenbläschen mit Amnionflüssigkeit gefüllt. Während der Geburt wird diese teilweise aus den Alveolen ausgepresst, der Rest wird in den folgenden Stunden resorbiert, so dass spätestens am 3. Lebenstag alle Alveolen belüftet sind.

 

Verdauungstrakt

Wechseln zu: Navigation, Suche

Mit den Begriffen Verdauungstrakt oder Verdauungsapparat (lat.: Apparatus digestorius) werden die Organe zusammengefasst, die der Aufnahme, der Zerkleinerung und dem Weitertransport der Nahrung dienen, um diese letztlich zu verdauen und die darin enthaltenen Nährstoffe für den Körper verwertbar zu machen. Weitere Synonyme für den Verdauungstrakt sind Canalis alimentarius und Systema digestivum. Der Verdauungsapparat besteht aus der Mundhöhle, dem Pharynx (Rachen), der Speiseröhre, dem Magen-Darm-Trakt (Synonym: Gastrointestinaltrakt, von griech. gaster Magen und lat. intestinum Darm), der Leber mit den Gallenwegen und der Bauchspeicheldrüse.

Funktion

Im Verdauungstrakt findet der eigentliche enzymatische Aufschluss der Nahrung, die Resorption von Nahrungsstoffen und Wasser sowie die Ausscheidung unverdaulicher oder nicht verwertbarer Nahrungsbestandteile statt. Neben Enzymen sind auch verschiedene Mikroorganismen an der Verdauung beteiligt, die man unter dem Begriff Darmflora zusammenfasst.

Die großen Verdauungsdrüsen, die Leber – mit Gallenblase – und die Bauchspeicheldrüse, produzieren Verdauungssäfte, die die Nahrung in ihre Bestandteile aufspalten. Der untere Teil des Verdauungstraktes dient hauptsächlich der Resorption von Wasser und der Ausscheidung der unverdaulichen Nahrungsbestandteile.

Aufbau

Übersicht über den menschlichen Verdauungstrakt

Der Verdauungstrakt kann in einen Kopf- und einen Rumpfteil (synonym auch oberer und unterer Verdauungstrakt) unterteilt werden. Neben dem eigentlichen Magen-Darm-Trakt (Gastrointestinaltrakt) gehören zum Verdauungssystem noch die Mundhöhle, wo vorwiegend die mechanische Zerkleinerung der Nahrung erfolgt, Speicheldrüsen, Pharynx und die Speiseröhre, die dem Weitertransport in den Magen dient. Die Zuordnung der Speiseröhre zum Magen-Darm-Trakt ist umstritten.

Kopfteil

Die Mundwerkzeuge und Mundhöhle (Lippen, Zähne, Zunge) dienen der Nahrungsaufnahme und der Zerkleinerung. Die Speicheldrüsen produzieren Speichel, der die Nahrung gleitfähig macht und bei einigen Säugetieren auch Enzyme zum Stärkeabbau (Amylase) enthält. Der Pharynx (Rachen, Schlundkopf) ist der Übergang zur Speiseröhre. In ihm kreuzen sich Nahrungs- und Atemweg.

Rumpfteil

Unterscheidung der Verdauungssysteme

Durch die Evolution ist der Verdauungstrakt an die jeweilige Nahrung der Spezies optimal angepasst. Einerseits betrifft es die Anatomie des Verdauungstraktes und anderseits das Milieu der nährstoffspaltenden Mikroorganismen. Hier eine Übersicht der verbreiteten Verdauungssysteme:

  • Einfaches System mit funktionellem Blinddarm wie zum Beispiel beim Pferd, Kaninchen und Ratte
    • Magen
    • Dünndarm
    • Blinddarm (mit mikrobieller Verdauung)
    • Dickdarm
  • Aviäres System (Geflügel) wie zum Beispiel Huhn, Pute, Ente
    • Drüsenmagen (Proventriculus oder Ventriculus glandularis)
    • Muskelmagen (Ventriculus muscularis) (mikrobielle Verdauung)
    • Dünndarm (Hauptabsorbtionsort)
    • Dickdarm (mikrobielle Verdauung)
    • Kloake (gemeinsame Ausscheidung von Harn und Kot)

Wandschichten

Die Wand des Verdauungstraktes besteht in allen Abschnitten grundsätzlich aus vier Geweben, die in Schichten übereinander liegen. In den verschiedenen Abschnitten des Magen-Darm-Traktes unterscheidet sich der Aufbau je nach Funktion etwas.

Die Schichten von innen nach außen:

  • Mukosa (Schleimhaut): Sie bildet die innere Wandschicht des Magen-Darm-Traktes.
  • Submukosa: Sie bildet eine recht schmale Bindegewebsschicht zwischen Mukosa und Muskularis.
  • Muskularis: Diese besteht im Mund, Pharynx und dem oberen Teil der Speiseröhre aus quergestreiften Muskeln, die der Willkür unterliegen und z. B. beim Schlucken angespannt werden können. Im übrigen Teil des Verdauungskanals überwiegt die glatte Muskulatur, die durch den Parasympathikus gesteuert wird. Sie ist auch verantwortlich für die Peristaltik des Darms und ist sowohl ringförmig als auch längs angeordnet, damit sich der Verdauungskanal sowohl längs als auch quer zusammenziehen kann.
  • Tunica serosa (auch Peritoneum viscerale). Bildet die äußerste Gewebsschicht des Magen-Darm-Trakts. Sie sondert Flüssigkeiten ab und ermöglicht somit das Übereinandergleiten mit anderen Organen. Die Serosa kommt allerdings nur bei Organen vor, die im Peritoneum liegen. In den anderen Bereichen des Körpers wird die Verbindung einzelner Organe durch lockeres Bindegewebe (Adventitia) realisiert.

Quellen und weiterführende Informationen

Literatur

  • M. et. al: Tierernährung, 12. neu überarbeitete Aufl., DLG-Verlags-GmbH, Frankfurt am Main 2008, ISBN 978-3-7690-0703-9 (Abschnitt „Unterscheidung der Verdauungssysteme“)
  • Franz-Viktor Salomon: Verdauungsapparat, Apparatus digestorius. In: Salomon u. a. (Hrsg.): Anatomie für die Tiermedizin. Enke-Verlag Stuttgart, 2. erw. Aufl. 2008, S. 235–323, ISBN 978-3-8304-1075-1

 

Harn- und Geschlechtsapparat

Wechseln zu: Navigation, Suche

Als Harn- und Geschlechtsapparat (lat. Apparatus urogenitalis) oder Urogenitalsystem werden bei Wirbeltieren die Harnorgane (Organa urinaria) und die Geschlechtsorgane (Organa genitalia) zusammengefasst.

Dieser übergeordnete Begriff für die beiden Organsysteme wurde aufgrund gemeinsamer embryologischer Anlagen eingeführt. Die Gemeinsamkeiten in der Herkunft sind auch beim erwachsenen Wirbeltier noch erkennbar. So liegen diese Organe eng benachbart und haben eine gemeinsame Ausführungsöffnung. Bei männlichen Säugetieren die Harnröhre, beziehungsweise den Scheidenvorhof und die Vulva bei weiblichen. Hauptsächlich bei Vögeln, aber auch den Kloakentieren, münden Geschlechtsorgane, Harnleiter und Darm in einer gemeinsamen Öffnung, der Kloake.

 

Harnorgan

Wechseln zu: Navigation, Suche

Die Harnorgane (lat. Organa urinaria) sind eine Gruppe von Organen, die der Bildung und Ausscheidung des Urins (Syn. Harn) dienen. Zusammen mit den Geschlechtsorganen werden die Harnorgane zum Organsystem Harn- und Geschlechtsapparat (Syn. Urogenitaltrakt oder Urogenitalsystem) zusammengefasst.

Zu den Harnorganen gehören bei den Wirbeltieren:

  • Niere (lat. Ren, griech. Nephros)
  • Harnleiter (Ureter)
  • Harnblase (Vesica urinaria), nicht bei allen Wirbeltieren ausgebildet
  • Harnröhre (Urethra), nicht bei allen Wirbeltieren ausgebildet

Bei den Wirbellosen übernehmen verschiedene Formen der Nephridien diese Aufgabe.

Literatur

  • Helga Fritsch, Wolfgang Kühnel: Taschenatlas Anatomie. 9. Auflage. 2, Thieme, ISBN 313492109X, S. 262.
  • Erica Jecklin: Arbeitsbuch Anatomie und Physiologie. Für Pflege- und andere Gesundheitsfachberufe. Urban & Fischer - Elsevier, 14. Auflage - 2012. ISBN 3437269801 (Ab Seite 305)
  • Uwe Gille: Harnorgane. In: F.-V. Salomon u. a. (Hrsg.): Anatomie für die Tiermedizin. Enke, Stuttgart 2004. ISBN 3-8304-1007-7
  • Theodor H.Schiebler (Hrsg.): Anatomie. 9. Auflage. Springer, ISBN 3540219668, S. 611–613.

Geschlechtsorgan

Wechseln zu: Navigation, Suche
Entwicklung der äußeren Geschlechtsorgane in der Embryonalphase

Die Geschlechtsorgane (lat. Organa genitalia) oder Genitalien dienen bei Lebewesen-Arten mit mehreren Paarungstypen (Geschlechtern) vornehmlich der unmittelbaren Fortpflanzung. Sie werden deshalb auch als primäre Geschlechtsmerkmale bezeichnet.

In diesem Artikel werden ausschließlich die Geschlechtsorgane von Säugetieren behandelt.

Funktional unterscheidet man bei Säugetieren zwischen den Sexualorganen – Organe, die zur Ausübung des Geschlechtsverkehrs dienen – und den Reproduktionsorganen. Es werden dementsprechend äußere von inneren Genitalorganen unterschieden. Bei männlichen Individuen kommt noch dazu, dass – als Drittfunktion – der Penis mit seiner Harnröhre Teil der ableitenden Harnwege ist.

Unterschieden wird ferner in (primäre, eigentliche) Geschlechtsdrüsen (das sind Hoden und Eierstöcke) sowie sog. (zusätzliche) akzessorische Geschlechtsdrüsen.

Weibliche Geschlechtsorgane der Säugetiere

Die weiblichen Geschlechtsorgane (Organa genitalia feminina) werden wie folgt eingeteilt:

Äußere Geschlechtsorgane

Vulva oder Scham bildet die Gesamtheit der äußeren weiblichen Geschlechtsorgane. Sie verläuft vom Venushügel bis zum Perineum.

Die äußeren Schamlippen schließen mit der Schamspalte die kleinen Schamlippen, den Scheidenvorhof sowie die Klitoris samt Klitorisvorhaut ein. Der Scheidenvorhof stellt die Verbindung zu den inneren weiblichen Geschlechtsorganen dar.

 

Innere Geschlechtsorgane

Die Verbindung zwischen inneren und äußeren Geschlechtsorganen stellt die Vagina, auch Scheide genannt, dar. Sie mündet unten in den Scheidenvorhof und wird oberhalb durch den Gebärmutterhals abgeschlossen.

Am Gebärmutterhals geht die Vagina in die Gebärmutter über, der Ort der Einnistung befruchteter Eizellen.

Die Produktion und Reifung der Eier erfolgt in den Eierstöcken, von wo aus sie über die Eileiter in die Gebärmutter gelangen.

Akzessorische Geschlechtsdrüsen

Männliche Geschlechtsorgane der Säugetiere

Die folgende Einteilung der männlichen Geschlechtsorgane (Organa genitalia masculina) mag auf den ersten Blick erstaunen: Die Hoden liegen zwar außen, zählen aber dennoch zu den inneren Geschlechtsorganen. Diese Einteilung ist darin begründet, dass die Hoden sich zunächst im Bauchraum entwickeln und erst zur Geburt bei den meisten Säugetieren in den Hodensack wandern (Hodenabstieg, Descensus testis).

Äußere Geschlechtsorgane

Der Penis stellt das Begattungsorgan des Mannes bzw. männlichen Tieres dar. Darüber hinaus stellt er einen Teil der ableitenden Harnwege dar, indem er die Harnröhre umschließt.

Der Hodensack (Skrotum) stellt einen Hautsack unterhalb des Penis dar, der die Hoden und Samenleiter umschließt.

Innere Geschlechtsorgane

Die Hoden stellen die Produktionsstellen der männlichen Keimzellen, der Spermien, dar. Sie sind die männlichen Keimdrüsen.

Weitere innere Geschlechtsorgane des Mannes sind die Nebenhoden und die für den Samentransport zuständigen Samenleiter.

Akzessorische Geschlechtsdrüsen

Entlang des Samenweges sind bei den Säugetieren bis zu vier paarige akzessorische (zusätzliche) Geschlechtsdrüsen ausgebildet. Dies sind die Samenleiterampulle, die Samenblasendrüse, die Prostata und die Bulbourethraldrüse. Sie produzieren einen Großteil der Samenflüssigkeit.

Literatur und Quellen

  • Uwe Gille: Harn- und Geschlechtsapparat, Apparatus urogenitalis. In: F.-V. Salomon u. a. (Hrsg.): Anatomie für die Tiermedizin. Enke, Stuttgart 2004, ISBN 3-8304-1007-7, S. 368–403.

Stütz- und Bewegungsapparat

Wechseln zu: Navigation, Suche

Der Stütz- und Bewegungsapparat ist ein Organsystem in der Anatomie. Er sorgt dafür, dass der Körper in einer festgelegten Form bleibt, aber trotzdem zielgerichtet bewegt werden kann. Dafür ist er aus festen und beweglichen Organen zusammengesetzt.

Das knöcherne Skelett sorgt für die Formgebung des Körpers. Es wird durch die Skelettmuskeln bewegt. Dazu dienen Sehnen als Kraftüberträger, die auf der einen Seite am Knochen angewachsen sind, auf der anderen Seite im Muskel verankert sind. Falls es notwendig wird, die Zugrichtung der Sehnen zu ändern, werden sie mit Bändern umgelenkt. Bänder dienen ebenfalls dazu, stark belastete Gelenke zu festigen und zu sichern.

Mit dem Begriff „Stützapparat“ werden in der Orthopädie auch Orthesen bezeichnet, die bei Funktionsbeeinträchtigungen des Stütz- und Bewegungsapparates angewendet werden.

Skelett

Das Skelett besteht aus verschieden geformten Knochen (Röhrenknochen, platte Knochen und weitere), die zum Teil miteinander verwachsen sind, wie zum Beispiel der Schädel oder das Becken. Es hat nicht nur die Aufgabe, die Form des Körpers zu gewährleisten und damit die Beweglichkeit des Organismus sicherzustellen, sondern hat auch Schutzfunktionen für innere Organe (wiederum Schädel und Becken) oder ihre Arbeit überhaupt erst zu ermöglichen (der Brustkorb, ohne den die Atmung nicht funktionieren könnte). Zusätzlich ist das Innere der Knochen, das Knochenmark, eine wichtige Bildungsstätte für die Blutzellen.

Die Knochen sind untereinander mit Gelenken verbunden, die Bewegungsrichtung und Bewegungsradius der Knochen bestimmen.

Muskeln

Die Skelettmuskeln verbinden zwei verschiedene Knochen, indem sie über mindestens ein Gelenk hinweg mit ihren Sehnen an den Knochen ansetzen. Wenn sich ein Muskel verkürzt, zieht er die beiden Knochen in deren Gelenk aufeinander zu. Muskeln haben nur die Möglichkeit, sich zusammenzuziehen, nicht aber, sich selbst in ihre Ausgangslage zurück zu dehnen. Dafür brauchen sie einen oder mehrere Muskeln, die auf der anderen Seite des Gelenks ansetzen und die entgegengesetzte Bewegung bewirken. Solche Muskeln werden Gegenspieler (lat.: Antagonisten) genannt.

Skelettmuskeln müssen nicht unbedingt nur an einer einzigen Stelle an einem Knochen angewachsen sein. Manche Muskeln teilen sich in zwei oder mehr Teile auf, die zwar auf einer Seite in einer gemeinsamen Sehne ansetzen, auf der anderen Seite aber an unterschiedlichen Stellen am selben oder sogar an verschiedenen Knochen enden. Solche Muskeln nennt man Bizeps (bei zwei Muskelköpfen), Trizeps (drei Muskelköpfe) oder Quadrizeps (vier Muskelköpfe).

Skelettmuskeln bestehen aus einzelnen Zellen (Muskelfasern). Mehrere dieser Muskelfasern bilden Muskelfaserbündel, von denen mehrere zusammen mit einer festen, netzartigen Haut, der Faszie, umgeben sind und gemeinsam den Muskel bilden.

Sehnen und Sehnenscheiden

Damit die Kraft, die von den Muskeln entwickelt wird, in Bewegungen der Knochen umgesetzt wird, müssen beide Baugruppen miteinander verbunden werden. Dies ist die Aufgabe der Sehnen. Sie bestehen aus festem, aber biegsamem kollagenem Bindegewebe. Ihre Fasern liegen parallel zur Zugrichtung. Sehnen sind im Muskel mit den Muskelfasern verwachsen und setzen am Knochen an Vorsprüngen oder aufgerauten Bereichen an.

Zusätzlich zu den „normalen“ Sehnen gibt es auch Sehnenplatten (medizinisch: Aponeurosen). Sie besitzen nicht die Form eines Seils, sondern einer festen, dicken Haut. An ihnen können mehrere Muskeln oder Muskelköpfe gemeinsam ansetzen (z. B. die Zungenaponeurose, Aponeurosis linguae).

Um den Sehnen unnötige Reibung, die sie schädigen können, zu ersparen, werden besonders lange Sehnen in Sehnenscheiden geführt. Dabei handelt es sich um Röhren aus zwei Hautschichten, zwischen denen sich Flüssigkeit (Synovia) befindet. Dadurch entsteht eine Gleitfläche, die die Reibung zwischen der Sehne und dem umgebenden Gewebe deutlich herabsetzt.

Bänder

Auch Bänder (lat.: Ligamenta, Sing. Ligamentum) bestehen meist aus kollagenen Fasern, seltener aber auch aus elastischem Bindegewebe. Sie liegen entweder um Gelenke herum oder in ihnen (zum Beispiel die Kreuzbänder des Kniegelenks). Sie stützen die Gelenke oder hemmen die Beweglichkeit der Knochen untereinander und helfen dadurch, Überdehnungen von Muskeln oder Sehnen zu vermeiden.

Auch in der Bauchhöhle gibt es Bänder, die Organe an Ort und Stelle halten. Sie haben aber nichts mit den Bändern des Stützapparates zu tun und wurden in der veralteten Jenaer Nomina Anatomica (JNA) als Chorda oder Plica bezeichnet; gelegentlich findet sich diese Bezeichnung noch in der Literatur.

Schleimbeutel

An Stellen, die eine besondere Gefahr für Sehnen darstellen, baut der Körper zusätzliche Polster ein, die die Sehne gegen Durchscheuern schützen sollen: die Schleimbeutel (lat.: Bursa synovialis). Diese Polster sind kleine Hautkissen, die mit einer Flüssigkeit gefüllt sind und unter der Sehne auf der gefährdeten Seite platziert sind. Durch die Flüssigkeit wird der Druck der Sehne gleichmäßig auf eine größere Fläche verteilt.

Sesambeine

Ein Sesambein ist ein kleiner Knochen, der in eine Sehne eingewachsen ist und für einen zusätzlichen Abstand zum Knochen sorgt. Dadurch entsteht ein größerer Hebel für die Sehne, so dass eine geringere Kraft notwendig wird, um den mit der Sehne verbundenen Knochen zu bewegen.

Das bekannteste Beispiel für ein Sesambein ist die Kniescheibe, die in der Ansatzsehne des Musculus quadriceps femoris eingelagert ist. Durch diese Konstruktion kann der Unterschenkel leicht gestreckt werden, ohne dass der Oberschenkel noch mehr Muskelmasse aufweisen muss.

 

Skelett

Wechseln zu: Navigation, Suche
Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Skelett (Begriffsklärung) aufgeführt.

Das Skelett, auch Skelet (gr. skeletós „ausgetrockneter Körper“, „Mumie“[1]), ist in der Biologie bzw. in der Anatomie der Körperbestandteil, der die Stützstruktur eines Lebewesens bildet. Es gibt zwei unterschiedliche Skelettarten: Das Exoskelett, das die stabile, äußere Hülle eines Organismus bildet, und das Endoskelett, das die Stützstruktur im Inneren des Körpers bildet.

Im übertragenen Sinne versteht man in der Technik unter einem Skelett auch eine tragende Struktur, beispielsweise eines Gebäudes.

Zytoskelett

Endothelzellen unter dem Mikroskop. Die Mikrotubuli sind grün, Aktinfilamente rot markiert worden. Die Zellkerne sind blau markiert.

Das Zytoskelett (gr. κύτος kýtos, „Zelle“, eigentlich „Gefäß, Wölbung“) dient zur Stabilisierung und Formwahrung der Zellen. Weiterhin können sich Zellen mit dessen Hilfe bewegen und Stoffe in ihrem Inneren transportieren. Außerdem übernehmen Teile des Zytoskeletts auch Aufgaben in der Signalübertragung zwischen Zellen. Es besteht aus dünnen Proteinen, die die Zelle je nach Bedarf auf- und wieder abbauen kann. Diese werden als Mikrofilamente bezeichnet und verlaufen wie Fasern in alle Richtungen durch die Zelle. Bei Eukaryoten werden drei verschiedene Typen von Filamenten unterschieden: Aktinfilamente, Mikrotubuli und Intermediärfilamente. Die Filamente der Prokaryoten sind zwar homolog zu denen der Eukaryoten, besitzen jedoch einen anderen Aufbau.

Hydroskelett

Die einfachste Skelettform, die vor allem bei verschiedenen wirbellosen Tieren auftaucht, die als Würmer bezeichnet werden, ist das Hydroskelett, bei dem der äußere Hautmuskel wie ein Schlauch das Wasser im Inneren des Körpers zusammendrückt. Da Wasser kaum komprimierbar ist (d.h. sich nicht zusammendrücken lässt), wirkt der Körper relativ stabil.

Exoskelett

Kopf einer Ameise

Andere Tiere, vor allem die Gliederfüßer (gr: arthropoda), und hier besonders Insekten, Kieferklauenträger und Krebstiere, haben Exoskelette entwickelt. Da diese nur begrenzt mitwachsen können, finden in der Individualentwicklung meistens Häutungen statt, bei denen die während des Wachstums zu klein gewordene Hülle abgestreift wird.

Exoskelette können aus verschiedenen Materialien bestehen. Beispiele hierfür sind Chitin (bei Gliederfüßern), Kalziumverbindungen (bei Korallen, Mollusken und einigen Vielborstern) oder Silikat (bei Kieselalgen und Strahlentierchen).

Das Exoskelett von Insekten dient nicht nur als Schutz, sondern auch als Oberfläche zum Muskelansatz, als wasserdichter Schutz vor Austrocknung und als Sinnesorgan zur Interaktion mit ihrer Umwelt. Es besteht aus mehreren Schichten mit vier funktionell unterschiedlichen Regionen: Epicuticula, Procuticula, Epidermis und Basallamina[2]. Obwohl das Exoskelett der Gliederfüßer zum Großteil aus Chitin besteht, trifft dies nicht hundertprozentig zu.

Endoskelett

Vom Endoskelett spricht man, wenn die Stützstruktur der Tiere sich innerhalb des Körpers befindet. Diese Strukturen findet man etwa bei Chordatieren, Stachelhäutern und Schwämmen. Ein Endoskelett gibt dem Körper Halt und Stabilität und ermöglicht ihm die freie Bewegung. Echtes Endoskelett entstammt dem Mesoderm, diese Art von Skelett findet sich in den Chordatieren und den Stachelhäutern.

Schwämme

Spicula eines Pachastrelliden

Das Skelett der Schwämme besteht aus mikroskopisch kleinen kalk- oder siliciumdioxidhaltigen Skelettnadeln, den Spicula. Weiterer Bestandteil bei den Hornkieselschwämmen (Demospongiae) ist Spongin. Die Spicula werden von Skelerocyten, einer Zellart im Mesogloea (bindegewebsartige Mittelschicht) gebildet. Je nachdem, ob die Spicula aus Kalk oder Siliziumdioxid gebildet werden, spricht man von Kalk- oder Kieselschwämmen.

Stachelhäuter

Das Skelett der Stachelhäuter, zu denen unter anderem auch die Seesterne gehören, besteht aus Calcit und einem geringen Magnesiumoxidanteil. Es liegt unterhalb der Oberhaut (Epidermis) im Mesoderm und wird innerhalb von Zellverbänden von Skelettbildungszellen (Sclerocyten) gebildet. Dieses von den Sklerocyten geformte Gebilde (Stereom) ist porös und deshalb fest und zugleich leicht. Es verwächst zu Platten (Ossikeln), die in alle Richtungen wachsen können und somit auch den Verlust eines Körperteils ersetzen können. Gelenke, die einzelne Skelettteile verbinden, können durch die Muskulatur bewegt werden.

Chordatiere

Das Skelett der Wirbeltiere und der Schädellosen besteht aus festen Elementen, die über Skelettmuskeln gegeneinander bewegt werden können. Bei Menschen und generell bei den meisten Wirbeltiergruppen werden diese Elemente als Knochen bezeichnet. Weiterer wichtiger Baustein von Endoskeletten sind die Knorpel. Bei Säugetieren findet man sie überwiegend in den Gelenkbereichen. Bei anderen Tieren, wie den Knorpelfischen, zu denen die Haie zählen, ist das Skelett gänzlich aus Knorpeln aufgebaut.

Während Knochen aus Osteozyten (spezifische Zellen des Knochens) besteht, die um sich herum eine Matrix aus Collagen aufbauen, in die inorganische Elemente wie Hydroxyapatitkristalle (Ca5(PO4)3OH) eingelagert werden, besteht Knorpel aus Chondrozyten (spezifische Zellen der Knorpel), die um sich herum eine wasserreiche Matrix aus Proteoglycan und Glycoproteinen aufbauen. Anhand der Interzellulärmatrix wird zwischen hyalinem, elastischem und Faserknorpel unterschieden.

Knochen bilden neben ihrer Stützfunktion des Körpers und Schutzfunktion für die inneren Organe die mechanische Grundlage, die erst eine Bewegung ermöglicht. Außerdem dienen sie, auf zellulärer Ebene, als Calcium- und Phosphatspeicher.

Wirbeltiere

Dem Skelett der Wirbeltiere sind viele Gemeinsamkeiten ansehbar, trotzdem unterscheidet es sich, je nach Lebensraum und Anforderungen, teilweise erheblich. Mit diesen Gemeinsamkeiten und Unterschieden beschäftigt sich die Vergleichende Anatomie.

Das Skelett der Wirbeltiere wird in einen cranialen Teil (Cranium) und einen postcranialen Teil (Postcranium) unterschieden. Der craniale Teil umfasst nur den Schädel, während der postcraniale Teil den Rest des Skeletts umfasst. Das Postcranium wird weitergehend in das axiale und das appendikuläre Skelett unterteilt. Zum axialen Skelett gehören der Rumpf mit Wirbelsäule, Kreuzbein, Rippen und Brustbein. Die Gliedmaßen, der Schultergürtel sowie der Beckengürtel werden dagegen dem appendikulären Skelett zugeordnet.

Fische

Das Skelett der Fische besteht entweder aus Knorpel (Knorpelfische) oder aus Knochen (Knochenfische). Die Hauptmerkmale der Fische, die Flossen, sind mit knöchernen Flossenstrahlen (Radien) verstärkt. Die Flossen, mit Ausnahme der Schwanzflosse, haben keine direkte Verbindung mit der Wirbelsäule, sie werden lediglich durch die an den Flossenträgern (Radiale) ansetzenden Muskeln gestützt. Die Rippen setzen an der Wirbelsäule an und umspannen auch den Bauchraum bis zum After. Ein Brustbein fehlt. Die Gräten bestehen aus verknöchertem Bindegewebe in den Muskelscheiden der Knochenfische.

Vögel

Um das Gewicht der Vögel möglichst gering zu halten, sind einige der Vogelknochen mit Luft gefüllt.

Walskelett
Meeressäuger

Um eine Fortbewegung der Meeressäuger im Wasser zu erleichtern bzw. zu ermöglichen, haben sich bei ihnen die Vorderextremitäten zu paddelartigen Flossen umentwickelt. Die Hinterbeine gingen entweder gänzlich verloren, wie z. B. bei den Walen und Seekühen oder vereinigten sich zu einer einheitlichen Schwanzflosse (wie z. B. bei Robben).

Menschen
Hauptartikel: Knochen des Menschen
Menschliches Skelett (Frontansicht)

Das menschliche Skelett hat einen Anteil von 12 Prozent am Gesamtgewicht, bei einem 75 Kilogramm schweren Menschen wiegen die Knochen also nur neun Kilogramm. Das Skelett eines erwachsenen Menschen besteht aus etwas über 200 Knochen (genaue Zahlen schwanken zwischen Individuen). Das menschliche Skelett braucht mehrere Jahre, bis es vollständig entwickelt ist. Obwohl der Oberarmknochen (lat. Humerus) bereits im Mutterleib (8. Woche) verknöchert (ossifiziert), ist das Skelett erst um das 20. Lebensjahr herum vollständig entwickelt.

Fossilien

Skelette und Skelettteile sowie deren Versteinerungen gehören zu den wichtigsten Hinterlassenschaften, die von Lebewesen fossil überliefert sind, oft sogar zu den einzigen, vor allem dann, wenn sie aus festeren Substanzen (Kalk, Silikat) bestehen. Sie bilden dadurch eine wichtige Quelle für das Studium ausgestorbener, aber auch noch lebender Arten. Weichere Skelettteile (etwa aus Knorpel) bleiben dagegen oft nur unter günstigen Bedingungen erhalten. So ist z. B. Dunkleosteus nur durch seinen Schädel- und Nackenpanzer fossil überliefert.

Aus solchen Fossilien werden z. T. weitreichende Schlüsse auf Anatomie, Physiologie, Lebensweise (Zusammenleben, Ernährung, Fortpflanzung etc.), Verbreitung und Ausbreitung, Entstehung und Aussterben oder Verwandtschaft zu anderen Arten gezogen. Dies kann problematisch sein, wenn keine weiteren Quellen zur Verfügung stehen. Beispielsweise können ähnliche Merkmale auf konvergenter Evolution beruhen. Zudem ist die fossile Überlieferung oft sehr lückenhaft.

Literatur

  • Milton Hildebrand/George E. Goslow: Vergleichende und funktionelle Anatomie der Wirbeltiere, Springer, Berlin 2003, ISBN 3-540-00757-1

Quellen

  1. Hochspringen Ulrich Lehmann: Paläontologisches Wörterbuch. 4. Auflage. Ferdinand Enke Verlag, Stuttgart 1996, S. 221.
  2. Hochspringen NC State University

 

Muskulatur

Wechseln zu: Navigation, Suche
Die Muskulatur der Brust (Zeichnung von Bernardino Genga Anatomia per uso et intelligenza del disegno ricercata non solo su gl’ossi, e muscoli del corpo humano)
Muskeln des Menschen (aus der 4. Auflage von Meyers Konversations-Lexikon (1885–1890))
Sportstudenten der Deutschen Hochschule für Körperkultur (DHfK), Leipzig, April 1956

Die Muskulatur ist eines der Organsysteme im Körper der Gewebetiere (Eumetazoa, alle (vielzelligen) Tiere außer den Schwämmen und den Scheibentieren) und bezeichnet die Gesamtheit der Muskeln. Wird der Begriff im Zusammenhang mit anderen Körperteilen benutzt, wie z. B. bei den Bezeichnungen Bauchmuskulatur oder Rückenmuskulatur, so bezieht sich die Aussage auf die Muskelgruppen des jeweiligen Körperabschnitts und ihre Wechselwirkung.

Ein einzelner Muskel (lateinisch musculus ‚das Mäuschen‘ – da ein angespannter Muskel wie eine Maus unter der Haut aussieht) ist ein kontraktiles Organ, welches durch die Abfolge von Kontraktion und Erschlaffen innere und äußere Strukturen des Organismus bewegen kann. Diese Bewegung ist sowohl die Grundlage der aktiven Fortbewegung des Individuums und der Gestaltveränderung des Körpers als auch vieler innerer Körperfunktionen.

Die grundlegende Einteilung der Muskulatur bei Säugetieren einschließlich des Menschen erfolgt über den histologischen Aufbau und den Mechanismus der Kontraktion. Demnach unterscheidet man glatte Muskulatur und quergestreifte Muskulatur. Letztere lässt sich weiter in die Herzmuskulatur und die Skelettmuskulatur unterteilen. Weitere Unterscheidungsmöglichkeiten ergeben sich durch die Form, die Fasertypen und funktionelle Aspekte (s. u.). Das einem Muskel zugrundeliegende Gewebe ist das Muskelgewebe, welches aus charakteristischen Muskelzellen besteht. Beim Skelettmuskel werden die Muskelzellen als Muskelfasern bezeichnet.

Vergleich der Muskeltypen

  Glatte Muskulatur Herzmuskulatur Skelettmuskulatur
Aufbau      
  motorische Endplatte keine keine ja
  Fasern fusiform, kurz (<0,4 mm) verzweigt zylindrisch, lang (<15 cm)
  Mitochondrien wenige viele wenige bis viele (je nach Muskeltyp)
  Zellkerne/Faser 1 1 viele
  Sarkomere keine ja, max. Länge 2,6 µm ja, max. Länge 3,7 µm
  Synzytium nein (Einzelzellen) nein (aber funktionelles Synzytium) ja
  sarkopl. Retikulum wenig entwickelt mäßig entwickelt stark entwickelt
ATPase wenig mittel viel
Funktion      
  Schrittmacher spontan aktiv (langsam) ja (schnell) nein (benötigt Nervenreiz)
  Reizantwort abgestuft „Alles-oder-Nichts“ „Alles-oder-Nichts“
  tetanisierbar ja nein ja
  Arbeitsbereich Kraft/Längen-Kurve ist variabel im Anstieg der Kraft/Längen-Kurve am Maximum der Kraft/Längen-Kurve
Reizantwort Muskelreiz-glatt.svg     Muskelreiz-herz.svg     Muskelreiz-skelett.svg

Histologie

Die Bezeichnung der zytologischen Strukturen der Muskelzellen unterliegt einer für die Muskulatur spezifischen Nomenklatur und unterscheidet sich deshalb teilweise von der anderer Zellen:

Muskelzelle andere Zellen des Organismus
Sarkoplasma Zytoplasma
sarkoplasmatisches Retikulum glattes endoplasmatisches Retikulum
Sarkosom Mitochondrium
Sarkolemm(a) Zellmembran
  • Skelettmuskeln sind die willkürlich steuerbaren Teile der Muskulatur und gewährleisten die Beweglichkeit des Tieres. Sie heißen auch gestreifte – bzw. quergestreifte Muskeln, da ihre Myofibrillen im Gegensatz zu den glatten Muskeln ganz regelmäßig angeordnet sind und dadurch ein erkennbares Ringmuster aus roten Myosinfilamenten und weißen Aktinfilamenten erzeugen. Sämtliche Skelettmuskeln werden der somatischen Muskulatur zugeordnet.
  • Der Herzmuskel arbeitet rhythmisch, kann nicht krampfen, hat ein eigenes Erregungsleitungssystem, kann spontan depolarisieren, enthält die kardiale Isoform des Troponin I und T. Er weist die Querstreifung von Skelettmuskeln auf, ist allerdings unwillkürlich in erster Linie über den Sinusknoten gesteuert und stellt somit eine eigene Muskelart dar.
  • Die glatte Muskulatur ist nicht der bewussten Kontrolle unterworfen, sondern vom vegetativen Nervensystem innerviert und gesteuert. Dazu zählt zum Beispiel die Muskulatur des Darms. Sämtliche glatte Muskeln werden der viszeralen Muskulatur zugeordnet.

Die gestreifte Muskulatur stammt von den Myotomen der Somiten der Leibeswand ab, die glatte aus dem Mesoderm der Splanchnopleura, sodass diese auch als Eingeweidemuskulatur bezeichnet wird. Im Bereich des Kopfdarms wird die viszerale Muskulatur von den Hirnnerven innerviert und ist quergestreift, während die restliche Eingeweidemuskulatur aus glatten Muskelfasern besteht.

Andere Kategorisierungsmöglichkeiten

Ein Muskel lässt sich auf verschiedene Weise einordnen, wobei diese Einteilung nicht direkt und eindeutig ist. Oft überschneiden sich die Eigenschaften. Je nach Blickwinkel werden sie durch ihre Zellstruktur, Form oder Funktion unterschieden. Weiterhin lassen sich Typen von Muskelfasern unterscheiden, die in einem Muskel vermischt vorkommen.

Anatomisch

Beispiele: Ziliarmuskel zur Verformung der Linse des Auges, Schließmuskeln um After, Mund, Auge, Blasenausgang und Magenausgang (Pylorus)
Beispiele: Speiseröhre, Magen, Darm, Herz
  • spindelförmige Muskeln
Beispiel: Musculus soleus
  • federförmige Muskeln
  • mehrbäuchige Muskeln
Beispiel: Musculus rectus abdominis
  • mehrköpfige Muskeln
Beispiele: Musculus biceps brachii, Musculus triceps brachii und Musculus quadriceps femoris
 

Unterteilt wird auch in:

Zytologisch (s. o.) und Funktional (s. u.)

Einteilung der Muskelfasertypen

Nach Enzymaktivität

  • Typ-I-Fasern: SO (engl. slow oxidative fibers = ,langsame oxidative Fasern‘)
  • Typ-II-Fasern:
    • Typ-II-A-Fasern: FOG (engl. fast oxydative glycolytic fibers = ,schnelle oxidative/glykolytische Fasern‘)
    • Typ-II-X-Fasern: FG (engl. fast glycolytic fibers = ,schnelle glykolytische Fasern‘). Man unterscheidet je nach Tierart verschiedene Typen (B oder C).

Nach Kontraktionseigenschaft

Extrafusale Fasern (auch twitch fibers = ,Zuckungsfasern‘) (Arbeitsmuskulatur)

  • ST-Fasern (engl. slow twitch fibers = ,langsam zuckende Fasern‘) sind sehr ausdauernd, entwickeln allerdings nicht hohe Kräfte (entspricht SO).
  • Intermediärtyp (entspricht FOG)
  • FT-Fasern (engl. fast twitch fibers = ,schnell zuckende Fasern‘) können hohe Kräfte entwickeln, ermüden aber sehr schnell (entspricht FG).
  • Tonusfasern können nur eine langsame, wurmförmige Kontraktion ausüben. Sie kommen selten, beispielsweise in den äußeren Augenmuskeln, im Musculus tensor tympani und in Muskelspindeln, vor.

Intrafusale Fasern (Muskelspindeln) dienen als Dehnungsrezeptoren und zur Einstellung der Empfindlichkeit der Muskelspindeln.

Nach Farbe

  • Rote Muskeln (entspricht SO)
  • Weiße Muskeln (entspricht FG)
    • Haben in vielen Tieren (nicht aber beim Menschen) wegen des niedrigen Myoglobingehalts eine helle Farbe.

Das Verhältnis der Zusammensetzung eines Skelettmuskels aus verschiedenen Muskelfasertypen ist weitestgehend genetisch bestimmt und ist durch ein gezieltes Ausdauer- beziehungsweise Krafttraining begrenzt veränderbar. Dieses verändert nicht das Verhältnis zwischen Typ-I- und Typ-II-Fasern, aber wohl das zwischen Typ-II-A und Typ-II-X. Aus vielen II-X-Fasern werden II-A-Fasern gebildet (z. B. im Musculus trapezius bei Krafttraining Gehalt an II-A von 27 % auf bis zu 44 % aller Fasern). Die Verteilung der verschiedenen Muskelfasern in einem Muskel ist nicht homogen, sondern unterschiedlich an Ursprung, Ansatz bzw. im Inneren und an der Oberfläche des Muskels.

Muskelkontraktion

Hauptartikel: Muskelkontraktion

Beschreibung

Die Kontraktion ist ein mechanischer Vorgang, der durch einen Nervenimpuls ausgelöst wird. Dabei schieben sich Eiweißmoleküle (Aktin und Myosin) ineinander. Dieses wird durch schnell aufeinanderfolgende Konformationsänderungen der chemischen Struktur möglich, wodurch die Fortsätze der Myosinfilamente – vergleichbar mit schnellen Ruderbewegungen – die Myosinfilamente in die Aktinfilamente hineinziehen. Hört der Nerv auf, den Muskel mit Impulsen zu versorgen, erschlafft der Muskel, man spricht dann von Muskelrelaxation.

Kontraktionsarten

Je nach Kraft- (Spannungs-) bzw. Längenänderung des Muskels lassen sich mehrere Arten der Kontraktion unterscheiden:

  • isotonisch („gleichgespannt“): Der Muskel verkürzt sich ohne Kraftänderung.
  • isometrisch („gleichen Maßes“): Die Kraft erhöht sich bei gleichbleibender Länge des Muskels (haltend-statisch). Im physikalischen Sinne wird keine Arbeit geleistet, da der zurückgelegte Weg gleich null ist.
  • auxotonisch („verschiedengespannt“): Sowohl Kraft als auch Länge ändern sich. Das ist der häufigste Kontraktionstyp bei Alltagsbewegungen.

Aus diesen elementaren Arten der Kontraktion lassen sich komplexere Kontraktionsformen zusammensetzen. Sie werden im alltäglichen Leben am häufigsten benutzt. Das sind z. B.

  • die Unterstützungszuckung: erst isometrische, dann isotonische Kontraktion. Beispiel: Anheben eines Gewichtes vom Boden und anschließendes Anwinkeln des Unterarms.
  • die Anschlagszuckung: erst isotonische, dann isometrische Kontraktion. Beispiel: Kaubewegung, Ohrfeige.

Hinsichtlich der resultierenden Längenänderung des Muskels und der Geschwindigkeit, mit der diese erfolgt, lassen sich Kontraktionen z. B. folgendermaßen charakterisieren:

  • isokinetisch („gleich schnell“): Der Widerstand wird mit einer gleich bleibenden Geschwindigkeit überwunden.
  • konzentrisch: der Muskel überwindet den Widerstand und wird dadurch kürzer (positiv-dynamisch, überwindend). Die intramuskuläre Spannung ändert sich, und die Muskeln verkürzen sich.
  • exzentrisch: ob gewollt oder nicht, der Widerstand ist größer als die Spannung im Muskel, dadurch wird der Muskel gedehnt (negativ, dynamisch, nachgebend). Es kommt zu Spannungsänderungen und Verlängerung/Dehnung der Muskeln.

Aufbau und Funktion der quergestreiften Skelettmuskulatur

Lichtmikroskopisches Längsschnittbild quergestreifter Skelettmuskelfasern (Hämatoxylin-Eosin-Färbung
Schematischer Aufbau eines Skelettmuskels

Jeder Muskel ist von einer elastischen Hülle aus Bindegewebe (Faszie) ummantelt, die mehrere Fleischfasern (auch Sekundärbündel) umschließt, welche wiederum mit Bindegewebe (Perimysium externum und Epimysium) umschlossen und zusammengehalten werden, das von Nerven und Blutgefäßen durchsetzt ist und sich an der Faszie befestigt. Jede Fleischfaser unterteilt sich in mehrere Faserbündel (auch Primärbündel), die zueinander verschiebbar gelagert sind, damit der Muskel biegsam und anschmiegend ist. Diese Faserbündel sind eine Vereinigung von bis zu zwölf Muskelfasern, die durch feines Bindegewebe mit Kapillargefäßen vereint sind.

Aktiv wird der Muskel, indem er sich anspannt (Kontraktion) (anschließend wieder entspannt), eine Bewegung und eine Kraft ausübt. Eine Muskelkontraktion wird von elektrischen Impulsen (Aktionspotentialen) ausgelöst, die vom Gehirn oder Rückenmark ausgesandt und über die Nerven weitergeleitet worden sind.

Bei der Muskelfaser handelt es sich um ein Syncytium, das heißt um eine Zelle, die aus mehreren determinierten Vorläuferzellen (Myoblasten) entsteht und daher mehrere Kerne enthält. Die Muskelfaser kann eine beachtliche Länge von mehr als 30 cm und ungefähr 0,1 Millimeter Dicke erreichen. Sie ist teilungsunfähig, was der Grund ist, warum bei einem Verlust der Faser kein Ersatz nachwachsen kann und bei Muskelzuwachs sich lediglich die Faser verdickt. Das heißt, von Geburt an ist die Obergrenze der Muskelfasern festgelegt. Neben den üblichen Bestandteilen einer tierischen Zelle machen hauptsächlich Myofibrillen, das sind feinste Fäserchen, zu etwa 80 Prozent die Fasermasse aus. Die Membranhülle von Muskelfasern nennt man Sarkolemma.

Funktionelle Einteilung der Skelettmuskulatur

Im Hinblick auf ihre Zusammenarbeit werden Muskeln in gegenspielende und zusammenwirkende unterteilt. Agonisten (Spieler) und Antagonisten (Gegenspieler) haben zueinander eine entgegengesetzte Wirkung. Synergisten dagegen haben eine gleiche oder ähnliche Wirkung und arbeiten deshalb bei vielen Bewegungsabläufen zusammen.

Beispiel: Antagonisten: Bizeps und Trizeps;
Beispiel: Synergisten: für Liegestütze braucht man den Trizeps und die Brustmuskeln (pectoralis major, - minor).
  • Muskeln, die Extremitäten an den Körper heranziehen, heißen Adduktoren (Anzieher), ihre Antagonisten, die Abduktoren (Abzieher), sorgen dafür, dass die Extremitäten vom Körper abgespreizt werden.

Beispiel: äußere und innere Muskeln des Oberschenkels, mit welchen man die Beine spreizen und zusammenführen kann.

  • Flexoren (Beuger) dagegen knicken Finger und Zehen ein, ihre Antagonisten sind die Extensoren (Strecker).
  • Rotatoren (führen Drehbewegungen aus, z. B. des Unterarmes oder des Kopfes)

Skelettmuskulatur des Menschen

Bodybuilder

Jeder gesunde Mensch besitzt 656 Muskeln, wobei diese beim Mann etwa 40 %, bei der Frau etwa 23 % der Gesamtkörpermasse ausmachen, die Muskulösität hängt insgesamt aber von der Lebensweise ab.

Der flächenmäßig größte Muskel des Menschen ist der Große Rückenmuskel (Musculus latissimus dorsi), der dem Volumen nach größte Muskel ist der Musculus gluteus maximus (größter Gesäßmuskel), der stärkste der Kaumuskel (Musculus masseter), der längste der Schneidermuskel (Musculus sartorius), die aktivsten die Augenmuskeln und der kleinste der Steigbügelmuskel (Musculus stapedius). Aufgrund des Umfangs mechanischer Arbeit, die die Muskeln leisten müssen, sind sie neben dem Nervensystem einer der Hauptabnehmer von Körperenergie.

Entwicklung

Beim Neugeborenen ist die Muskulatur im Rumpf weiter entwickelt als die in den Extremitäten. Der Muskelanteil beträgt etwa 21 Prozent des Körpergewichtes. Während des Wachstums nimmt die Muskelmasse beim Mann etwa um das 32,8-Fache zu, die Gesamtkörpermasse jedoch nur etwa um das 19,4-Fache. Bei Männern schließt sich die Entwicklung der Muskulatur im Zeitraum zwischen dem 23. und dem 27. Lebensjahr ab, bei Frauen zwischen dem 19. und 23. Lebensjahr. Die Muskelmasse beim Mann liegt bei etwa 37–57 %, während sie bei der Frau etwa 27–43 % beträgt.

Muskelmasse in Prozent
Alter Mann Frau
10–19 a 43–57 35–43
20–49 a 40–54 31–39
50–100 a 37–48 27–34

Im höheren Alter geht die Entwicklung der Muskeln zurück zu einem Zustand ähnlich dem vor der vollständigen Ausbildung. Dies betrifft also vor allem einen Abbau der Muskeln in den Beinen.[1]

Physiologische Muskelinsuffizienz

Aufgrund seiner mikroskopischen Anatomie kann sich ein Muskel weder vollkommen zusammenziehen (das Sarkomer kann sich nur um ca. 30 % verkürzen), noch unbegrenzt dehnen (das Sarkomer würde ansonsten reißen). Daraus ergeben sich zwei verschiedene Formen physiologischer Insuffizienz eines Muskels:

  • Aktive Muskelinsuffizienz tritt auf, wenn der Agonist nicht mehr weiter kontrahieren kann, weil er schon maximal kontrahiert ist.
  • Passive Muskelinsuffizienz tritt auf, wenn der Agonist nicht weiter kontrahieren kann, da sein Antagonist bereits maximal gedehnt ist.

Bei zweigelenkigen Muskeln ist es möglich, der Muskelinsuffizienz (bezüglich der Muskelwirkung auf ein Gelenk) entgegenzuwirken, indem man den Muskel im anderen Gelenk dehnt (bzw. den Antagonisten verkürzt). So wirkt beispielsweise der Musculus biceps brachii bezüglich seiner Beugekraft im Ellbogengelenk stärker, wenn der Arm retrovertiert ist (also das Ellenbogengelenk hinter dem Körper), da nun der aktiven Insuffizienz des Muskels durch Dehnung im Schultergelenk (der lange Bizepskopf überzieht beide Gelenke) entgegengewirkt wird.

Erkrankungen und Verletzungen der Skelettmuskulatur

 

Siehe auch:

Siehe auch

 

Literatur

  • Schmidt, Unsicher (Hrsg.): Lehrbuch Vorklinik – Teil B, Deutscher Ärzte-Verlag Köln, 2003, ISBN 3-7691-0442-0
  • Frédéric Delavier: Der neue Muskel-Guide. Gezieltes Krafttraining, Anatomie (OT: Guide des mouvements de musculation). BLV, München 2006, ISBN 3-8354-0014-2
  • Sigrid Thaller, Leopold Mathelitsch: Was leistet ein Sportler? Kraft, Leistung und Energie im Muskel. Physik in unserer Zeit 37(2), S. 86–89 (2006), ISSN 0031-9252
  • Detlev Drenckhahn (Hrsg.): Anatomie Band 1. Urban & Fisher, München 2008

Haut

Wechseln zu: Navigation, Suche
Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Haut (Begriffsklärung) aufgeführt.
Nahaufnahme menschlicher Haut (Felderhaut)

Die Haut (gr. derma; auch Kutis von lat. cutis) ist funktionell das vielseitigste Organ des menschlichen oder tierischen Organismus. Die Haut dient der Abgrenzung von Innen und Außen (Hüllorgan), dem Schutz vor Umwelteinflüssen, der Repräsentation, Kommunikation und Wahrung der Homöostase (inneres Gleichgewicht). Außerdem übernimmt die Haut wichtige Funktionen im Bereich des Stoffwechsels und der Immunologie und verfügt über vielfältige Anpassungsmechanismen. Die menschliche Haut verträgt den pH-Wert von 5,5 am besten.

Aufbau der Haut

Aufbau der menschlichen Haut mit Hautanhangsgebilden

Die äußere Haut gliedert sich prinzipiell in drei wesentliche Schichten: Die Oberhaut (Epidermis), die mit der unmittelbar darunterliegenden Lederhaut (auch Dermis oder Corium) zusammen die Cutis bildet, sowie die Unterhaut (Subcutis).

Epidermis (Oberhaut)

Die Epidermis oder Oberhaut gehört zu den Epithelgeweben, es handelt sich um ein mehrschichtiges verhornendes Plattenepithel, das üblicherweise zwischen 0,03 bis 0,05 Millimeter, an den Handinnenflächen und den Fußsohlen aber bis zu mehrere Millimeter dick ist.

Von außen nach innen werden folgende Schichten unterschieden:

  • Hornschicht (Stratum corneum)
  • Glanzschicht (Stratum lucidum) (ist nur an der Leistenhaut der Hand- und Fußinnenseiten vorhanden)
  • Körnerzellenschicht (Stratum granulosum)
  • Stachelzellschicht (Stratum spinosum)
  • Basalschicht (Stratum basale)

Stachelzellschicht und Basalzellschicht bilden zusammen die Keimschicht (Stratum germinativum).

Dermis (Corium, Lederhaut)

Aufbau der menschlichen Haut mit Beschriftung

Die Dermis besteht vorwiegend aus Bindegewebsfasern und dient der Ernährung und Verankerung der Epidermis. Hier versorgt das fein kapillarisierte Blutgefäßsystem die Grenzzone zur Epidermis. Der Ursprung der Talg- und Schweißdrüsen findet sich in der unteren Lederhaut. Diese enthält die für die Temperaturregelung wichtige glatte Muskulatur und Blutgefäße.

Die Dermis wird in ein Stratum papillare (Papillenschicht, Zapfenschicht, Papillarkörper) und ein Stratum reticulare (Netzschicht) unterteilt.

Subcutis (Unterhaut)

Die Subcutis bildet die Unterlage für die darüberliegenden Hautschichten und enthält die größeren Blutgefäße und Nerven für die oberen Hautschichten sowie das subkutane Fett und lockeres Bindegewebe. In der Unterhaut liegen Sinneszellen für starke Druckreize, zum Beispiel die Lamellenkörperchen.

Hautanhangsgebilde

Optische Kohärenztomografie der Fingerspitze (Leistenhaut) in vivo mit Schweißdrüsenausgängen

Zu den Hautanhangsgebilden gehören Haare mit ihren Talgdrüsen und dem Haarbalgmuskel (Musculus arrector pili), Nägel, Hörner und Schweißdrüsen, wobei letztere in ekkrine und apokrine Schweißdrüsen unterteilt werden. Nicht zuletzt ist auch die Milchdrüse eine modifizierte Hautdrüse.

Leistenhaut und Felderhaut

Betrachtet man die Haut genauer oder mit einer Lupe, so wird ein feines Relief sichtbar. Nach diesem wird die Haut in zwei Typen unterschieden.

Die Leistenhaut

tritt an den Fingern, der Handinnenseite (palmar) und der Fußsohle (plantar) auf. Die Epidermis zeigt hier feine Papillarlinien (Hautleisten), die dadurch entstehen, dass sich die Lederhautpapillen in Längsreihen anordnen. Dabei ist jede Hautleiste von zwei Papillarkörperreihen unterlagert. Die Hautleisten bilden ein individuelles Muster aus verschiedenen geometrischen Figuren (Wirbel, Bogen, Schleife, Doppelschleife). Diese Muster werden bei der Daktyloskopie (Fingerabdruckerkennung) kriminaltechnisch als eine Form der biometrischen Daten genutzt. Die Leistenhaut enthält, außer vielen Schweißdrüsen, keine Hautanhangsgebilde.

Die Felderhaut

bedeckt die übrigen Hautbereiche. Hier zeigt die Oberfläche durch feine Furchen abgegrenzte rhombische Felder (Areolae cutaneae). Die Furchen entstehen an den papillenfreien Epidermisbereichen und verstreichen bei stärkerer Hautspannung. Sie dienen als Reservefalten, da die Oberhaut weniger dehnungsfähig ist als die Lederhaut. Die Größe der Hautfelder variiert je nach Körperregion. Die Felderhaut enthält die Hautanhangsgebilde und ist weniger als 1/10 mm dick. Am dünnsten ist sie im Bereich des Auges und der Geschlechtsorgane.

Teile der Haut und ihre Funktionen

Die Haut schützt vor Wärmeverlust und äußeren Einflüssen und dient der Aufnahme von Berührungsreizen. Darüber hinaus erfüllen die einzelnen Bestandteile spezialisierte Funktionen:

Die Haut als Grenzorgan

Die Haut schützt den Organismus vor dem Eindringen von Krankheitserregern und gasförmigen, flüssigen oder festen Fremdsubstanzen im weitesten Sinn, vor mechanischen Verletzungen, Strahlenschäden, aber auch vor Flüssigkeits-, Elektrolyt- und Proteinverlusten, die bei schweren Verbrennungen lebensbedrohliche Ausmaße annehmen. Besiedelt wird sie von Bakterien und Pilzen, der sogenannten residenten Hautflora. Als antigenpräsentierende Zellen fungieren in der Haut die Langerhanszellen.

Stoffaustausch

Über die Körperoberfläche werden in unterschiedlichem Maße bei verschiedenen Tieren Stoffe aus der Umgebung aufgenommen und abgegeben. Diese können gasförmig, flüssig oder fest (in wässrigem Medium gelöst) sein. Der Stoffaustausch kann aktiv (unter Energieaufwand) oder passiv (in Richtung eines osmotischen Gefälles) verlaufen.

Bei den Gasen kann es sich um die Aufnahme von Sauerstoff und die Abgabe von Kohlendioxid (Hautatmung) handeln, aber auch um Stickstoff und Inertgase. Wasser kann aufgenommen oder abgegeben werden zur Wasserregulation und als Transportmedium für gelöste gasförmigen oder feste Stoffe dienen. Gelöste Stoffe können Salze sein (Aufnahme oder Abgabe), Nahrungsstoffe (viele Endoparasiten ernähren sich ausschließlich so), Ausscheidungsprodukte, aber auch toxische Stoffe aus der Umwelt (wie bei organischen Bleiverbindungen).

Wärmehaushalt

Über die Haut kann der Körper seinen Wärmehaushalt regulieren. Einer Überhitzung wirkt die Haut mit den Schweißdrüsen entgegen. Durch die Schweißproduktion und die dadurch mögliche Verdunstung wird Wärme von den dicht unter der Haut verlaufenden Kapillargefäßen, die dazu weit geöffnet sind, abgeführt (siehe Schwitzen). Mit Hilfe des Unterhautfettgewebes und im geringeren Maße durch die der Behaarung wird Wärme zurückgehalten. Bei Kälte werden die Haut und das Unterhautfettgewebe nur noch gering durchblutet und beide wirken dadurch als Isolatorschicht. Die Haare können Aufgrund des geringen Haarkleides des Menschen nur noch geringe Isolationsfunktion übernehmen. Dennoch kann man das Wirkprinzip eines Fellkleides noch gut beobachten. Bei der bei Kälte auftretenden Gänsehaut richtet der Musculus arrector pili das Haar auf. Eine geschlossene Behaarung ermöglicht hier einen wesentlich besseren Schutz vor Unterkühlung.

UV-Strahlungsschutz

Die Stärke der einfallenden UV-Strahlung auf der Erdoberfläche hängt von der Tageszeit, der geographischen Lage, der Jahreszeit, der Seehöhe, der jeweiligen Dicke der Ozonschicht, der Bewölkung und von vielen anderen örtlichen Parametern ab. Gegen die schädlichen Wirkungen der UV-Strahlung auf die Haut und der darunterliegenden Gewebe existieren folgende Schutzmechanismen:

  • Während das Haarkleid (Fell) der Säugetiere oder das Federkleid der Vögel sehr effektiv gegen nachteilige Folgen der UV-Strahlung schützt, da es den größten Anteil der UV-Strahlung absorbiert oder reflektiert, ist der unbekleidete Mensch weitgehend ungeschützt.
  • Die Hornschicht (stratum corneum) der menschliche Haut absorbiert und reflektiert normalerweise etwa 10 % der UVB- und die Hälfte der UVA-Strahlung. Auf beständige erhöhte UV-Belastung reagiert die Haut zunächst mit einer Verdickung der Hornschicht. Als „Lichtschwiele“ ist diese besonders stark nach Sonnenbränden ausgebildet.[1]
  • Der Schutz der Haut durch Pigmentierung beruht auf der physikalischen Absorption von UV-Strahlen durch Pigmente. Viele Tiere besitzen eine Pigmentierung der Haut. Die veränderliche Pigmentierung der menschlichen Haut stellt im Tierreich jedoch eine einzigartige Anpassungs- und Schutzmöglichkeit gegen UV-Strahlung dar. Es gibt kaum Tiere, deren Haut in der Lage ist, die Pigmentierung so stark zu verändern wie der Mensch.[1]
    • Als so genannte „Sofortbräunung“ (engl. immediate pigment darkening) bezeichnet man eine kurzfristige, nur wenige Stunden anhaltende Bräunung der Haut nach einer UV-Belastung. Die Sofortbräunung beruht sowohl auf einer Änderung der chemischen Konformation der Melaninmoleküle als auch auf einer Umverteilung der Pigmentkörperchen in der Epidermis; sie besitzt fast keine Schutzwirkung gegen UV-Strahlung [1].
    • Die (verzögerte) UV-Bräunung setzt erst ca. 72 Stunden nach der UV-Belastung ein. Die Melanozyten der Haut reagieren auf UV-Einstrahlung mit der verstärkten Produktion und Abgabe von Eumelanin (oder Phäomelanin bei Menschen des Hauttyps 1), das der Haut einen braunen (Phäomelanin: rötlichen) Farbton gibt, und UV in hohem Maße absorbiert, wobei Phäomelanin wesentlich weniger UV absorbiert. Die ethnisch verschiedenen Hautfarben der Menschen resultieren aus den jeweiligen Hauttypen.
  • Der Schweiß des menschlichen Körpers enthält UVA-Strahlung absorbierende Urocaninsäure.

Die ersten Hominiden hatten möglicherweise eine nur schwach pigmentierte Haut, die von dunklen Haaren bedeckt war, ähnlich wie bei heutigen Schimpansen. Relativ bald in der Hominidenevolution dürfte sich eine nackte, dunkel pigmentierte Haut entwickelt haben, die als UV-Schutz diente. Mit der Ausbreitung in den sonnenärmeren Norden konnte sich die Pigmentierung verringern, vermutlich um besser Vitamin D generieren zu können. Insbesondere während der Schwangerschaft und während des Stillens könnten sich hieraus Überlebensvorteile ergeben haben[2].

Die Haut als Kontakt- und Sinnesorgan

Die Haut stellt den sichtbaren Teil des menschlichen Körpers dar. Als solcher erfüllt die Haut eine Reihe kommunikativer Funktionen. Zur Reizaufnahme und damit zur Oberflächensensibilität ist die Haut mit unterschiedlichen Typen von Rezeptoren ausgestattet:

Die psychogalvanische Hautreaktion gibt Rückschlüsse auf emotionale Vorgänge.

Siehe auch: Lügendetektor
Siehe auch: Erröten und Erythrophobie
Siehe auch: Streicheln und Erotik

Die Haut als Stammzellreservoir

Die Haut enthält adulte Stammzellen die durch vier zusätzlich durch Retroviren eingeschleuste Gene in pluripotente Stammzellen umgewandelt werden können. Damit könnte die Haut als Quelle für Therapien der regenerativen Medizin dienen.[3][4]

Die Haut als Repräsentationsorgan

Da die Haut stark das Erscheinungsbild des Menschen prägt, ist sie Hauptobjekt der Kosmetik. Natürliche Erscheinungen sind Sommersprossen, Leberflecken und Altersflecken. Künstlich verändert wird das Aussehen der Haut durch Tätowierungen, die Skarifizierung, Brandnarben oder die Körperbemalung. Außerdem ist die Haut Trägerin aller Arten von Körperschmuck.

Die Haut von Tieren

Kinder betrachten die Haut eines Krokodils

Bei Säugetieren

Die Haut ist überwiegend von Fell bedeckt und kann daher relativ dünn sein. Bei den meisten Hunderassen ist sie fast weiß.

Siehe auch: Hornhaut, Schwimmhaut; Decke (Haut+Fell bei Hirsch und Reh)

Amphibienhaut

Die Haut der Amphibien ist dünn, nackt und feucht. Ihre Oberflächenbeschaffenheit ist bei Fröschen und Salamandern glatt oder bei Kröten und Unken warzig. Die Haut von Amphibien zeigt eine hohe Farbenvielfalt. Manche Arten, wie der einheimische Laubfrosch, besitzen sogar die Fähigkeit zum Farbwechsel ähnlich wie Chamäleons. Verantwortlich für diese Eigenschaft sind spezielle Pigmentzellen unterhalb der Oberhaut, die unterschiedliche Farbstoffe speichern, so Melanin (braun bis schwarz), Pteridin (gelb) und Carotinoide (orange bis rot).

Von Zeit zu Zeit wird die Oberhaut der Amphibien erneuert (Häutung). Die alte Haut wird bei Froschlurchen dabei abgesprengt, bei Schwanzlurchen (speziell Molche) jedoch als Ganzes abgestreift. Manche Hautpartien von Amphibien sind besonders dehnbar und ermöglichen die Ausbildung von Schallblasen zur Lauterzeugung.

Diese Hauteigenschaften bringen Vor- und Nachteile mit sich. Vorteile sind:

  • Die dünne Haut ermöglicht die Sauerstoffaufnahme direkt über die Körperoberfläche (Hautatmung), ebenso die Wasseraufnahme.
  • Eine glatte Haut hat einen geringeren Strömungswiderstand und ermöglicht so schnelleres Schwimmen.
  • Bei vielen Amphibien, vor allem bei Fröschen, wird die Haut mit einer glitschigen Schleimschicht befeuchtet, die die Flucht vor Feinden unterstützt.
  • Die Hautdrüsen der Amphibien sind in der Lage, Hautgifte abzusondern; diese stellen einen wirksamen Fraßschutz dar. Vor allem schützen sie die feuchte Haut vor Pilz- und Bakterieninfektion – selbst für die extrem starken Gifte der Pfeilgiftfröschen soll dies der Hauptgrund sein.

Nachteile sind:

  • Die dünne Haut ist leichter verletzbar.
  • Erhöhte Austrocknungsgefahr bei warmem Sonnenschein durch die Hautfeuchtigkeit der meisten Amphibien. Das führt zu ihrer verstärkten Nachtaktivität.
  • Die Wasseraufnahmefähigkeit dünner Haut erleichtert auch die Aufnahme von Giften. Auf Äckern eingesetzte Spritzmittel, Kunstdünger, aber auch Jauche und saurer Regen führen während der Laichwanderung rasch zum Tod.

Hautkrankheiten

Es gibt zahlreiche Hautkrankheiten, die auf einer direkten Schädigung der Haut beruhen, aber auch solche, die durch andere Organ- oder Allgemeinerkrankungen entstehen. Hautveränderungen bezeichnet man in der Dermatologie – dem medizinischen Fachgebiet der Hautkrankheiten – als Effloreszenzen.

Literatur

Immunsystem

Wechseln zu: Navigation, Suche

Als Immunsystem (lat. immunis ‚unberührt‘, ‚frei‘, ‚rein‘) wird das biologische Abwehrsystem höherer Lebewesen bezeichnet, das Gewebeschädigungen durch Krankheitserreger verhindert. Es entfernt in den Körper eingedrungene Mikroorganismen, fremde Substanzen und ist außerdem in der Lage, fehlerhaft gewordene körpereigene Zellen zu zerstören. Das Immunsystem ist ein komplexes Netzwerk aus verschiedenen Organen, Zelltypen und Molekülen und der zentrale Forschungsgegenstand der Immunologie.

Das Immunsystem hat eine große Bedeutung für die körperliche Unversehrtheit von Lebewesen, denn praktisch alle Organismen sind ständig den Einflüssen der belebten Umwelt ausgesetzt; manche dieser Einflüsse stellen eine Bedrohung dar: Wenn schädliche Mikroorganismen in den Körper eindringen, kann dies zu Funktionsstörungen und Krankheiten führen. Typische Krankheitserreger sind Bakterien, Viren und Pilze, sowie einzellige (z. B. Protozoen wie Plasmodien) beziehungsweise mehrzellige Parasiten (z. B. Bandwürmer).

Auch Veränderungen im Inneren des Körpers können die Existenz eines Lebewesens bedrohen: Wenn normale Körperzellen im Laufe der Zeit ihre gesunde Funktion verlieren, dann sterben sie meist ab und müssen abgebaut werden (Nekrose) oder bauen sich dabei selbst ab (Apoptose). In seltenen Fällen können sie auch krankhaft entarten und zur Entstehung von Krebs führen.

Alle Lebewesen verfügen daher über Schutzfunktionen. Schon einfache Organismen besitzen einen solchen Abwehrmechanismus, die so genannte Angeborene Immunantwort. Sie entstand bereits sehr früh in der Stammesgeschichte der Lebewesen und wurde seitdem weitgehend unverändert beibehalten. Die Wirbeltiere entwickelten zusätzlich eine komplexe, anpassungsfähige, so genannte adaptive Immunabwehr, die sie noch effektiver vor Krankheitserregern schützt.

Die pflanzliche Immunantwort hat Ähnlichkeiten mit der angeborenen Immunantwort bei Tieren. Pflanzen besitzen keine adaptive Immunantwort, also auch keine T-Zellen oder Antikörper.

Einteilung

Es gibt zwei grundlegend verschiedene Mechanismen der Immunabwehr, je nachdem, ob diese angeboren und daher in gewisser Weise (vgl. aber unten: bow-tie-architecture) erregerunspezifisch, oder ob diese erworben und daher erregerspezifisch ist.

Angeborene oder unspezifische Immunabwehr

Hauptartikel: Angeborene Immunantwort

Schon sehr früh in der Stammesgeschichte der Lebewesen entwickelte sich die unspezifische oder angeborene Immunabwehr (engl. „innate immunity“). Dazu zählen anatomische und physiologische Barrieren wie Epithelien, aber auch zellvermittelte Gegenwehr durch Phagozytose, sowie allgemein entzündliche Reaktionen und das Komplementsystem. Die angeborene Immunantwort findet innerhalb von Minuten statt, ist aber durch die Erbinformation lebenslang festgelegt.

Adaptive oder spezifische Immunabwehr

Die spezifische oder adaptive Immunabwehr, früher auch „erworbenes Immunsystem“ genannt, entwickelte sich im Laufe der Phylogenese der Wirbeltiere aus der angeborenen Immunabwehr. Sie zeichnet sich durch die Anpassungsfähigkeit gegenüber neuen oder veränderten Krankheitserregern aus. Im Rahmen dieser Anpassung sind die Zellen der adaptiven Immunabwehr in der Lage, spezifische Strukturen (Antigene) der Angreifer zu erkennen und gezielt zelluläre Abwehrmechanismen und molekulare Antikörper zu bilden. Neben Antigenpräsentierenden Zellen (APC) wie Dendritischen Zellen, stellen zwei Gruppen von Zellen die wesentlichen Elemente der adaptiven Immunität dar. Die T-Lymphozyten, welche zum einen die zellvermittelte Immunantwort gewährleisten und zum anderen die B-Lymphozyten unterstützen, sowie die B-Lymphozyten selbst, die für die humorale Immunität verantwortlich sind, also für jene Abwehrmaßnahmen, die sich über sezernierte Antikörper gegen Eindringlinge in den Körperflüssigkeiten (Humores) richten. Nach der Infektion bleiben spezifische Antikörper und Gedächtniszellen erhalten, um bei erneutem Kontakt mit dem Krankheitserreger binnen kurzer Zeit eine angemessene Abwehrreaktion zu ermöglichen.

Das adaptive Immunsystem ersetzt aber nicht das angeborene, sondern arbeitet mit diesem zusammen. Die verschiedenen Bestandteile des Immunsystems bedingen sich gegenseitig. Erst durch ein gut koordiniertes Zusammenspiel der angeborenen und adaptiven Immunabwehr wird die komplexe Immunreaktion des Körpers ermöglicht.[1]

Erst in den Jahren 2005-2007 wurde das CRISPR-Cas-System in vielen Bakterien und Archaeen entdeckt, welches ein vollständiges adaptives Immunsystem gegen Viren und mobile DNA darstellt.[2][3][4]

Bestandteile des Immunsystems

Die Bestandteile des Immunsystems sind

  • mechanische Barrieren, die ein Eindringen der Schädlinge verhindern sollen
  • Zellen, wie zum Beispiel Granulozyten, natürliche Killerzellen (NK-Zellen) oder T-Lymphozyten. Sie sind teilweise zu spezialisierten Organen (→ Lymphatisches System) zusammengefasst.
  • Proteine, die als Botenstoffe oder zur Abwehr von Krankheitserregern dienen
  • psychische Immunfaktoren.

Mechanische und physiologische Barrieren

Die mechanischen und physiologischen Barrieren des Körpers sind die erste Verteidigungslinie gegen Krankheitserreger. Sie sorgen dafür, dass die Pathogene erst gar nicht in den Körper eindringen können oder ihn möglichst schnell wieder verlassen:

  • Haut – äußere Schicht als Barriere, Talg, Schweiß und Normalflora als Wachstumsbremsen für pathogene Mikroorganismen
  • Schleimhaut – Bindefunktion des Schleims
  • Augen – Abtransportfunktion der Tränen, antimikrobielles Enzym Lysozym bekämpft Mikroorganismen
  • Atemwege – Bindefunktion des Schleims, Abtransportfunktion der Flimmerhärchen
  • Mundhöhle – antimikrobielles Enzym Lysozym im Speichel bekämpft Mikroorganismen
  • MagenMagensäure (die Salzsäure enthält) und Eiweiß abbauende Enzyme zerstören fast alle Bakterien und Mikroorganismen
  • Darm – Infektabwehr durch anwesende Bakterien (Darmflora), Abtransportfunktion durch ständige Entleerung und das so genannte darmassoziierte Immunsystem (GALT = Gut Associated Lymphoid Tissue) und antibakterielle Proteine
  • Harntrakt – Abtransportfunktion durch ständige Harnausspülung sowie osmotische Effekte der hohen Harnstoffkonzentration

Zelluläre Bestandteile

neutrophiler Granulozyt wandert aus dem Blutgefäß in das Gewebe ein, sezerniert proteolytische Enzyme, um interzelluläre Verbindungen zu lösen (zur Verbesserung seiner Beweglichkeit) und phagozytiert Bakterien

Die Zellen des Immunsystems zirkulieren in den Blutgefäßen und Lymphbahnen und kommen in den Geweben des Körpers vor. Dringt ein Krankheitserreger in den Körper ein, so können die Abwehrzellen ihn bekämpfen. Neutrophile Granulozyten, Monozyten/Makrophagen und dendritische Zellen können beispielsweise durch Aufnahme und Verdauung (Phagozytose) den Erreger selbst vernichten oder durch die Produktion von Immunmodulatoren und Zytokinen die Immunreaktion des Organismus steuern und andere Abwehrzellen zum Ort der Entzündung locken.

Granulozyten

Hauptartikel: Granulozyt

Granulozyten (von lat. Granulum: Körnchen) machen den Großteil der weißen Blutkörperchen (Leukozyten) aus. Sie können die Blutbahn verlassen und ins Gewebe einwandern. Granulozyten haben in ihrem Zytoplasma zahlreiche Bläschen (Vesikel oder Granula genannt), die aggressive Stoffe enthalten, mit denen Krankheitserreger unschädlich gemacht werden können. Andere Stoffe (beispielsweise Histamin) spielen bei der Entzündungsreaktion und bei Allergien eine Rolle. Die unterschiedlichen Gruppen von Granulozyten werden nach ihrer Färbereaktion in der Giemsa-Färbung eingeteilt.

Die Neutrophilen Granulozyten machen 40 bis 50 Prozent der zirkulierenden Leukozyten aus. Aktiviert durch Zytokine, die vom Ort der Infektion ausgesondert werden, wandern sie aus den Blutgefäßen in das betroffene Gewebe ein. Die Granula der Neutrophilen enthalten unter anderem saure Hydrolasen, Defensine (30 % des Inhalts), Myeloperoxidase und Proteasen, wie Elastase, Kollagenase, Neuramidase und Cathepsin G. Dieser „Cocktail“ ermöglicht es den Neutrophilen, sich einen Weg durch das Gewebe zu bahnen und zu den Bakterien vorzudringen. Dort sind sie in der Lage, Krankheitserreger (beispielsweise Bakterien) unter anderem durch Phagozytose zu vernichten.

Eosinophile Granulozyten machen etwa 3-5 Prozent der Zellen im Differentialblutbild aus. Ihren Namen beziehen sie vom Farbstoff Eosin, mit dem sie angefärbt werden können. Auch Eosinophile sind zur Chemotaxis befähigt, d. h. sie können sich in Richtung eines Entzündungsortes fortbewegen. Eosinophile enthalten in ihren Granula basische Proteine, zum Beispiel das Major Basic Protein, die sie nach Stimulation durch Antikörper der IgE-Klasse freisetzen. Eosinophile spielen eine wichtige Rolle bei der Parasitenabwehr; bei einem Befall mit Parasiten kommt es daher zu einer starken Vermehrung der Eosinophilen im Blut. Auch bei Allergien ist die Anzahl der Eosinophile im Blut erhöht, was darauf hinweist, dass die Eosinophilen auch bei dieser Erkrankung eine – wenig zuträgliche – Rolle spielen.

Basophile Granulozyten besitzen zahlreiche grobe unregelmäßige Granula, die unter anderem Histamin und Heparin enthalten. Im Differentialblutbild machen sie nur einen geringen Anteil aus (< 2  Prozent). Wenn ihre Rezeptoren durch an IgE gebundene Allergene stimuliert werden, schütten Basophile toxische Mediatoren, wie Histamin und Plättchenaktivierenden Faktor (PAF) aus. Über die physiologische Bedeutung der Basophilen besteht aber weitgehend Unklarheit.

Makrophagen

Hauptartikel: Makrophage
Ein Makrophage nimmt ein Antigen auf, um es über seinen MHC-II-Komplex einer T-Helferzelle zu präsentieren. Diese initiiert daraufhin die adaptive Immunantwort.

Makrophagen (Riesenfresszellen) stellen ebenfalls einen Teil der Patrouille des Immunsystems dar. Makrophagen reifen aus Monozyten (einkernige weiße Blutkörperchen = mononukleäre Leukozyten) heran, welche die Blutbahn verlassen. Makrophagen halten sich im Gewebe auf, dort erkennen und fressen (phagozytieren) sie eingedrungene Erreger. Können die Erreger nicht durch die Makrophagen allein bekämpft werden, so können Makrophagen die adaptive Immunabwehr aktivieren. Dazu werden die aufgenommenen Teile der Erreger im Inneren der Makrophagen in einzelne Peptide (Epitope) zerlegt und durch MHC-II-Moleküle auf der Oberfläche präsentiert. Der Makrophage wird also zu einer Antigen-präsentierenden Zelle. Die Antigene können erst dadurch von T-Helferzellen erkannt werden, die daraufhin eine adaptive Immunantwort initiieren, die letztendlich zur Vernichtung des Erregers führt. Makrophagen spielen außerdem bei der Bekämpfung und Beseitigung von schädlichen Substanzen und Abfallprodukten (beispielsweise Teer aus Zigarettenrauch in der Lunge) eine entscheidende Rolle, weshalb sie gelegentlich auch als „Müllabfuhr des Körpers“ bezeichnet werden.

Natürliche Killerzellen

Hauptartikel: NK-Zelle

Die 1975 entdeckten Natürlichen Killerzellen (NK-Zellen) sind Teil der angeborenen Immunabwehr.[5] Obwohl NK-Zellen keine antigenspezifischen Rezeptoren auf ihrer Oberfläche tragen, werden sie zu den Lymphozyten gezählt, da sie eine gemeinsame Vorläuferzelle im Knochenmark haben.
NK-Zellen sind eine der ersten Verteidigungslinien im Kampf gegen Infektionen und Krebs, weil sie infizierte Zellen vernichten können, ohne vorher mit dem Krankheitserreger selbst in Kontakt gewesen zu sein. Sie verwenden dazu einen Mechanismus, der in den 1980er Jahren von dem schwedischen Immunologen Klas Kärre entdeckt wurde und als „Fehlendes Selbst“ (engl. „missing self“) bezeichnet wird.[6] NK-Zellen erkennen unter anderem den MHC-I-Komplex, der auf nahezu allen gesunden Körperzellen vorkommt. Wird eine Zelle durch Viren infiziert oder wandelt sie sich in eine Tumorzelle um, so geht unter Umständen der MHC-I-Komplex auf der Oberfläche verloren. Das fein ausbalancierte Gleichgewicht von inhibierenden und aktivierenden Rezeptorsignalen wird dadurch zugunsten der NK-Zell-Aktivierung verschoben und die erkrankte Zelle fällt einer durch NK-Zellen ausgelösten Immunreaktion anheim.

Dendritische Zellen

Hauptartikel: Dendritische Zelle
Eine dendritische Zelle

Dendritische Zellen sind Zellen des Immunsystems, die sich je nach Typ aus Monozyten oder Vorläufern der T-Zellen entwickeln. Sie nehmen als Fresszellen (Phagozyten) Krankheitserreger auf, wandern in den nächsten Lymphknoten, und stimulieren die adaptive Immunabwehr indem sie die Antigene des zerlegten Erregers an ihrer Oberfläche den T-Lymphozyten präsentieren. Es genügt eine dendritische Zelle, um 100 bis 3.000 Antigen-spezifische T-Zellen zu aktivieren. Dies macht sie effizienter als z. B. Monozyten.[7] Dendritische Zellen sorgen auch für immunologische Toleranz gegenüber Selbstantigenen. Sie kommen vor allem in der Haut und in den Schleimhäuten vor.[8] Neue Forschungen zeigen, dass dendritische Zellen auch mit B-Zellen und NK-Zellen interagieren.[9]

T-Lymphozyten

Hauptartikel: T-Lymphozyt
Die zytotoxische T-Zelle erkennt das Antigen, das durch den MHC-I-Komplex der infizierten Zelle präsentiert wird.
Aktivierung der NK-Zelle durch Fehlen des MHC-I-Komplexes (Überwiegen der aktivierenden Stimuli) auf der infizierten Zelle.

T-Lymphozyten, auch T-Zellen genannt, entstehen im Knochenmark aus den Lymphoblasten und wandern in den Thymus, wo sie ausreifen (daher das T, von Thymus-abhängig). T-Zellen tragen an ihrer Oberfläche einen T-Zell-Rezeptor (TCR), mit dem jede T-Zelle jeweils ein spezifisches Antigen erkennen kann (Schlüssel-Schloss-Prinzip). Im Gegensatz zu den B-Lymphozyten, die auch freie Antigene erkennen, erkennen T-Zellen nur Antigene, die im Komplex mit MHC-Molekülen auf den Oberflächen von körpereigenen Zellen präsentiert werden. Die unterschiedlichen Typen von T-Zellen werden eingeteilt nach den Proteinen auf ihrer Zellmembran, die gleichzeitig für die Funktionen der Zellen wichtig sind: T-Helferzellen tragen beispielsweise das CD4-Protein (die Abkürzung CD steht für engl. Cluster of differentiation), die zytotoxischen T-Zellen haben das CD8-Protein auf ihrer Oberfläche.

T-Helferzellen

Die T-Helferzellen koordinieren die Immunreaktion. Sie erkennen über ihren spezifischen T-Zell-Rezeptor Antigene, die ihnen von den antigenpräsentierenden Zellen (dendritische Zellen, Makrophagen, B-Lymphozyten) auf MHC-II-Komplexen dargeboten werden. Diese Aktivierung veranlasst die T-Helferzelle sich zu teilen und ihre Botenstoffe freizusetzen: die Lymphokine der Zellen vom Subtyp TH1 führen dabei eher zur Verstärkung der zellulären Immunantwort, während TH2-Zellen mehr die Produktion von Antikörpern stimulieren.

Regulatorische T-Zellen

Die Mitte der 1990er erstmals beschriebenen regulatorischen T-Zellen tragen neben dem CD4-Rezeptor noch andere Proteine an ihrer Oberfläche (CD25, FoxP3).[10] Ihre Aufgabe ist die Modulation der Immunreaktion. Des Weiteren sind regulatorische T-Zellen vermutlich für die Unterdrückung einer überschießenden Immunantwort auf ansonsten 'harmlose' Antigene und Toleranzentwicklung gegen körpereigene Strukturen zuständig.

Zytotoxische T-Zellen

Die zytotoxischen T-Zellen können Antigene erkennen, die ihnen mithilfe der MHC-I-Komplexe präsentiert werden – körpereigene Zellen, die durch Krankheitserreger (zum Beispiel Viren) befallen sind, melden so ihren Zustand an das Immunsystem. Die zytotoxischen T-Zellen heften sich dann mit ihren T-Zell-Rezeptoren an diese Körperzellen; bei diesem Vorgang spielt ihr CD8-Rezeptor eine entscheidende Rolle.[11] Wenn sich noch weitere Rezeptoren, zum Beispiel der CD28-Rezeptor der zytotoxischen T-Zellen, an das fremde Eiweiß geheftet haben, beginnen sich die T-Zellen schnell zu vermehren, und schütten Substanzen aus, welche die infizierte oder krankhaft veränderte Zelle absterben lassen (sogenannte Apoptose, programmierter Zelltod).[12]

B-Lymphozyten

Hauptartikel: B-Lymphozyt
Eine B-Zelle wird nach Antigenkontakt zur Plasmazelle, die spezifische Antikörper produziert

B-Lymphozyten, oder kurz B-Zellen, gehören ebenfalls zu den Leukozyten (weiße Blutkörperchen). Die Bezeichnung „B-Zellen“ stammte ursprünglich von ihrem Bildungsort in der Bursa Fabricii bei Vögeln. Bei Säugetieren entstehen die B-Zellen, wie alle anderen Abwehrzellen auch, im Knochenmark, daher erhielt der Buchstabe B hier nachträglich die Bedeutung bone marrow (engl. für Knochenmark). Bindet eine B-Zelle an den Stoff (Antigen), der zu ihrem Rezeptor passt, kann sie durch Lymphokine aktiviert werden, die von aktivierten T-Helferzellen ausgeschüttet werden. Die derart aktivierten B-Zellen können sich daraufhin zu antikörperproduzierenden Plasmazellen oder zu Gedächtniszellen entwickeln.

B-Zellen sind im Gegensatz zu T-Zellen in der Lage, auch freie Antigene zu erkennen und sie einer Immunreaktion zuzuführen.

Humorale Bestandteile

Die humoralen Bestandteile des Immunsystems (von lat. humor „Flüssigkeit“) bezeichnen verschiedene Plasmaproteine, die passiv im Blut, bzw. der Lymph- und Gewebsflüssigkeit zirkulieren. Sie sind im Gegensatz zu den Abwehrzellen nicht in der Lage, aktiv an den Ort einer Infektion zu wandern.

Antikörper

Hauptartikel: Antikörper
Aufbau eines Antikörper-Moleküls (IgG)

Zur Abwehr von in den Organismus eingedrungenen Bakterien, Bakterientoxinen, Viren oder anderen Fremdstoffen produzieren die B-Lymphozyten und Plasmazellen maßgeschneiderte Antikörper, die bestimmte Proteine oder auch Zuckerketten (Antigene) an der Oberfläche der Fremdstoffe erkennen und sich an diese heften können. Antikörper haben prinzipiell drei Funktionen:

  • 1. Die so genannte Opsonierung. Das heißt, dass das Antigen durch den Fc-Teil (Teil der konstanten Kette des Antikörpers) für Phagozyten (Fresszellen) besser „sichtbar“ gemacht wird.
  • 2. Durch den Antigen-Antikörperkomplex wird das so genannte Komplementsystem aktiviert, das zum einen wiederum als Opsonin (=Stoffe die Opsonieren) wirkt, zum anderen Chemotaxine (Lockstoffe für Zellen des Immunsystems) freisetzt und einen sogenannten MAK (Membran-Angriffs-Komplex) bildet, der Löcher in Zellmembranen verursacht.
  • 3. Antikörper wirken direkt inaktivierend auf den Eindringling durch Verkleben und Bildung von großen Komplexen (je nach Antikörperklasse und Anzahl der Antigendeterminanten).

Die einfachsten Antikörper, die der so genannten IgG-Klasse, bestehen aus zwei identischen schweren Ketten und zwei identischen leichten Ketten. Die schweren Ketten sind unter anderem für die Verankerung des Antikörpers auf der Oberfläche von Granulozyten zuständig; die leichten Ketten bilden zusammen mit den schweren Ketten die für die Erkennung eines spezifischen Antigens verantwortliche Antigendeterminante im Fab-Fragment. Durch somatische Rekombination, somatische Hypermutation und Kombination verschiedener leichter und schwerer Ketten können Antikörper mehr als 100 Millionen verschiedene Fab-Fragmente bilden und damit eine Unzahl verschiedener Antigene erkennen.

Komplementsystem

Hauptartikel: Komplementsystem

Das Komplementsystem ist Teil der angeborenen Immunantwort, es besteht aus einer Gruppe von über 30 Plasmaproteinen mit ganz unterschiedlichen Eigenschaften. Ein Teil der zum Komplementsystem gehörenden Proteine sind zum Beispiel Proteasen, die sich an Mikroorganismen binden können und die Zellwände des Eindringlings schädigen, wodurch der Eindringling zerstört wird. Andere Proteine des Komplementsystems, die Anaphylatoxine, haben gefäßerweiternde Wirkung und fördern die Entzündungsreaktion. Viele Komplementfaktoren können außerdem Abwehrzellen zum Ort der Infektion locken und sind in der Lage, Fresszellen zu aktivieren, die die Eindringlinge dann verschlingen.

Interleukine

Hauptartikel: Interleukin

Die zu den Zytokinen gehörenden Interleukine sind körpereigene Botenstoffe, die von den Zellen des Immunsystems gebildet werden. Man kennt heutzutage bereits eine große Zahl von Interleukinen (IL-1 bis IL-35; Stand November 2009), die jeweils auf ganz unterschiedliche Abwehrzellen wirken – manche regen beispielsweise Leukozyten zu Wachstum, Reifung und Teilung an oder sorgen für deren Aktivierung.

Ablauf einer Immunreaktion

Hauptartikel: Immunreaktion

Falls Erreger die mechanischen Barrieren überwinden, mit denen sich der Körper vor einer Infektion schützt, so hängt der Ablauf der Immunreaktion davon ab, ob das Immunsystem bereits zuvor einmal einen Kontakt mit diesem bestimmten Erreger hatte.

Bei einer Erstinfektion beginnt die Immunreaktion meist mit den antigenpräsentierenden Zellen, hierzu gehören z. B. Makrophagen oder dendritische Zellen; diese Zellen sind als Teil der angeborenen Immunabwehr in der Lage, typische Merkmale von Krankheitserregern zu erkennen, ohne zuvor mit diesem Erreger Kontakt gehabt zu haben. Sie können die Krankheitserreger aufnehmen (phagozytieren) und in ihrem Inneren einschließen – förmlich „fressen“, daher werden sie auch als Fresszellen bezeichnet. Anschließend präsentieren sie Bruchstücke der Erreger an ihrer Oberfläche den Zellen der adaptiven Immunabwehr (B- und T-Lymphozyten), die daraufhin in einen aktivierten Zustand übergehen. Einige Abwehrzellen können daraufhin die Erreger durch Phagozytose oder die Ausschüttung aggressiver Substanzen direkt abtöten, andere beginnen mit der Produktion von Antikörpern, die an die Erreger binden und diese einerseits bewegungsunfähig und damit unschädlich machen, andererseits sie für die Vernichtung durch weitere Abwehrzellen markieren. Nach der ersten Infektion mit einem Erreger bleiben die Antikörper und so genannte Gedächtniszellen erhalten, um bei einer erneuten Infektion wesentlich schneller und effizienter auf den Eindringling reagieren zu können.

Ob nach einer Infektion tatsächlich auch eine Erkrankung auftritt, hängt von einem komplexen Wechselspiel des Immunsystems mit dem (ungebetenen) Gast ab. Eine Rolle spielen etwa die Menge der eingebrachten Erreger und deren krankmachenden Eigenschaften (Virulenz), sowie der Zustand des Immunsystems der betroffenen Person. So kann durch vorherigen Kontakt mit diesem Erreger bereits eine Immunität bestehen, die Erregerdosis oder -virulenz für einen Krankheitsausbruch zu gering sein oder das Immunsystem in der Lage sein, trotz Infektion Krankheitssymptome zu verhindern [inapparente Infektion oder stille Feiung (Immunisierung ohne Impfung oder Erkrankung)]. Bei intaktem Immunsystem und geringer Erregerdosis kann also eine Erkrankung wie beispielsweise eine Erkältung entweder überhaupt nicht ausbrechen oder einen weniger schweren Verlauf nehmen. Solange sich keine eindeutigen Symptome zeigen, kann der Verlauf einer Infektion kaum oder gar nicht vorhergesagt werden.

Wenn ein Krankheitserreger oder eine Tumorzelle keine Immunantwort erzeugt, dem Immunsystem also entkommt, wird dies als Immunescape bezeichnet.

Reifung und Alterung des Immunsystems

Das Immunsystem ist im Mutterleib und kurz nach der Geburt noch nicht in der Lage, effektiv Krankheitserreger zu bekämpfen. Der Fötus und Säugling ist daher auf die Schutzfunktion durch mütterliche Antikörper angewiesen (sog. Nestschutz), die er über die Plazenta, bzw. die Muttermilch aufnimmt. Bei vielen Säugetieren können Antikörper die Plazenta gar nicht passieren, die Aufnahme erfolgt dann über das Antikörper-reiche Kolostrum. Da die transplacentalen Antikörper im Blut des Babys mit einer Halbwertszeit von ungefähr 4 Wochen abgebaut werden, schützt diese passive Immunisierung lediglich 3 bis 4 Monate vor Infektion durch die meisten Keime. Stillen kann durch unspezifische IgAs, die sich den Schleimhäuten anlagern, noch etwas länger vor Infektionen der oberen Atemwege und Magen/Darmkeimen schützen.

In den ersten Lebensmonaten beginnt das Immunsystem, sich auf die Abwehr von Krankheitszellen vorzubereiten. Dies geschieht durch einen Vorgang der negativen Selektion; das heißt, der Körper bildet zunächst durch zufällige genetische Rekombination viele Millionen unterschiedlicher Abwehrzellen, von denen eine jede ein anderes Antigen erkennen kann. Im Anschluss werden solche Zellen eliminiert, die eine Immunreaktion auf körpereigene Strukturen veranlassen würden (Diesen Vorgang fasst man unter dem Begriff Selbsttoleranz zusammen). Bei den T-Zellen geschieht dies im Thymus, der Reifungsstätte der T-Zellen. Hier differenzieren sich die T-Zellen in die verschiedenen Typen (wie CD4+ und CD8+ Zellen) und werden anschließend mit körpereigenen Substanzen konfrontiert. Wenn eine T-Zelle einen dazu passenden Rezeptor trägt und an die körpereigene Struktur bindet, stirbt die T-Zelle ab. Das Immunsystem lernt so „fremd“ von „eigen“ zu unterscheiden.

Mit fortschreitendem Lebensalter steigert sich die Anfälligkeit des Menschen gegenüber Krankheiten und anderen Störungen wieder. Dies liegt vor allem daran, dass sich im Alter die Bildung von B- und T-Lymphozyten verringert. Des Weiteren sind die Abwehrzellen insgesamt weniger aktiv, was zu einer Schwächung der Immunabwehr führt, einhergehend mit erhöhtem Infekt- und Krebsrisiko. (→ siehe Hauptartikel Immunoseneszenz)

Störungen und Erkrankungen des Immunsystems

Wie bei allen biologischen Systemen können sich auch beim Immunsystem Fehler einschleichen. So kann das Immunsystem seine Fähigkeit verlieren, auf Erreger oder körpereigene Zellen angemessen zu reagieren: je nach Ursache der Störung kommt es entweder zu einer zu schwachen oder gar fehlenden Immunantwort oder zu einer zu starken, überschießenden Immunreaktion. Auch die Zellen des Immunsystems können maligne entarten und eine Krebserkrankung auslösen. Ebenso wird ein Einfluss von depressiven Störungen, Stress und anderen psychischen Erkrankungen auf das Immunsystem vermutet.

Immundefekte

Hauptartikel: Immundefekt

Fehlen einzelne Komponenten der Immunantwort oder funktionieren diese nicht mehr richtig, so kann das Immunsystem Krankheitserreger nicht mehr effektiv bekämpfen und selbst Erkrankungen, die normalerweise harmlos sind, können lebensbedrohliche Verläufe annehmen. Immundefekte können angeboren oder erworben sein:

  • Die schwere kombinierte Immundefizienz (SCID) ist eine Gruppe von angeborenen Immundefekten, die sich durch Beeinträchtigung sowohl der zellulären Immunabwehr als auch der humoralen Immunabwehr auszeichnen, daher die Bezeichnung „kombiniert“.
  • Die erworbene Immunschwäche AIDS wird durch das HI-Virus ausgelöst, das sich durch den Befall der T-Helferzellen erfolgreich der Immunabwehr entzieht. Durch die Vermehrung des HI-Virus werden jedoch immer mehr Abwehrzellen zerstört, so dass meist nach einigen Jahren Inkubationszeit eine zunehmende Abwehrschwäche eintritt und die Anzahl von Infekten und Tumorerkrankungen zunimmt.
  • Eine Neutropenie oder sogar Agranulozytose kann durch Nebenwirkungen bestimmter Medikamente (z. B. Zytostatika) oder durch Autoimmunerkrankungen ausgelöst werden und führt vor allem zu Schleimhautentzündungen und so genannten opportunistischen Infekten durch ansonsten harmlose Krankheitserreger.
  • Weitere angeborene Immundefekte sind: Morbus Behcet, DiGeorge-Syndrom, selektiver Immunglobulin-A-Mangel und das Wiskott-Aldrich-Syndrom, bei denen jeweils ein bestimmter Anteil der Immunabwehr gestört ist.

Überschießende Immunantwort

  • Autoimmunerkrankungen: Nicht immer funktionieren die Schutzmechanismen der Selbsttoleranz fehlerfrei, so dass es zu gefährlichen Autoimmunkrankheiten kommen kann, bei denen das Immunsystem körpereigene Strukturen angreift. Bei diesen Krankheiten ist das üblicherweise sehr gut ausbalancierte Gleichgewicht zwischen einerseits den potentiell selbstzerstörerisch wirkenden (autoreaktiven) T-Zellen und andererseits den regulatorischen T-Zellen gestört, die die Ersteren eigentlich in „Schach halten“ sollen. Einige Beispiele für Autoimmunerkrankungen sind:
  • Allergie/Heuschnupfen: Das Immunsystem kann die Fähigkeit verlieren, auf fremde Eiweiße angemessen zu reagieren. Die übermäßige Aktivierung von Basophilen (und Eosinophilen), insbesondere aber der ortsständigen Mastzellen, kann zur allergischen Reaktionen, wie zum Beispiel Heuschnupfen, führen. Eine systematische Aktivierung dieser Zellen, also die Aktivierung im ganzen Körper, kann schwere Symptome bis hin zum anaphylaktischen Schock auslösen.

Krebserkrankungen des Immunsystems

Vergrößerte Lymphknoten bei einem Golden Retriever mit Lymphknotenkrebs

Auch die Zellen des Immunsystems können bösartig entarten und so zu Krebserkrankungen führen, die meist den gesamten Körper befallen und sich vor allem in den Organen des Immunsystems abspielen und zur Abnahme der Immunabwehr und Verdrängung der normalen Blutbildung im Knochenmark führen. Durch die große Zahl unterschiedlicher Zellen und deren Vorläufer gibt es eine Vielzahl von verschiedenen Krebserkrankungen mit ganz unterschiedlichen Symptomen und Krankheitsverläufen, die aber grob in zwei Gruppen eingeteilt werden können: Geht der Krebs von den Vorläuferzellen im Knochenmark aus, so spricht man von Leukämien, die akut oder chronisch verlaufen können. Bösartige Tumoren der Lymphknoten nennt man Lymphknotenkrebs oder malignes Lymphom.

Andererseits ist ein therapeutischer Ansatz bei Krebserkrankungen, die Krebsimmuntherapie, die Aktivierung des Immunsystems gegen Tumorzellen.

Sonstige Schwachpunkte des Immunsystems

  • Haben Viren sich in eine Schicht eingehüllt, die der Körper nicht als fremd erkennt (beispielsweise eine Schicht aus Lipiden), so sind sie nicht erkennbar.
  • Im Gegensatz zu Krankheitserregern verursachen Tumorzellen keine Entzündungsreaktion, es kommt daher nicht zu einer Aktivierung der Immunantwort. Einige Tumore haben die Eigenschaft, sich regelrecht zu tarnen. Wenn keine tumorassoziierten Antigene (TAA) von den Krebszellen gebildet werden, erkennt das Immunsystem die Krebszelle daher nicht und es kommt zu Krebswachstum und/oder Metastasierung.[13]
  • Das Immunsystem schützt nach heutigem Kenntnisstand nicht vor Prionen (infektiöse Proteine), sondern scheint – im Gegenteil – eine Rolle bei der Ausbreitung der Prionenerkrankung zu spielen. So waren beispielsweise in einem Experiment Mäuse mit defektem Immunsystem immun gegen eingebrachte Prionen, während Tiere mit funktionierendem Immunsystem eine Erkrankung entwickelten.[14]

Einflüsse auf das Immunsystem

Bei einem intakten Immunsystem spricht man von Immunkompetenz. Die Abwehrfunktion kann auf verschiedene Weise positiv oder negativ beeinflusst werden:

Allgemeine Stärkung des Immunsystems

Die Redewendungen "Stärkung des Immunsystems" und "Stärkung der Abwehrkräfte" werden häufig als Claim in der Werbung für Nahrungsergänzungsmittel, Functional Food und alternativmedizinische Heilmittel verwendet. Problematisch sind hierbei fehlende medizinische Definitionen dafür, was unter "Stärkung" zu verstehen ist. Solche Verweise auf allgemeine, nichtspezifische Vorteile eines Produkts sind nach EU-Recht laut Artikel 10 Absatz 3 der Health-Claims Verordnung verboten, sofern ihnen nicht eine durch die Europäische Behörde für Lebensmittelsicherheit genehmigte spezielle gesundheitsbezogene Angabe beigefügt ist. Für eine Aufnahme in die entsprechende Positivliste genehmigter Angaben muss die Art und Weise, in der das Produkt auf das Immunsystem wirkt angegeben und die Wirksamkeit wissenschaftlich belegt werden.

Ein gesundes und kräftiges Immunsystem kann Menschen dabei helfen, diverse Krankheitserreger zu bekämpfen und manchmal damit auch einen Krankheitsausbruch zu verhindern oder Krankheitssymptome zu mildern, beziehungsweise den Krankheitsverlauf zu verkürzen.

Als Grundlage für ein gesundes Immunsystem gelten eine ausgewogene Ernährung des Menschen, die alle für den Organismus notwendigen Stoffe wie beispielsweise Mineralstoffe (besonders Eisen, Zink und Selen) und Vitamine enthält, und ausreichend Schlaf;[15] des Weiteren sollte lange andauernder (chronischer) Stress vermieden werden.[16]

Als geeignete Maßnahmen zur Steigerung der Immunfunktion gelten regelmäßige Bewegung, insbesondere sportliches Ausdauertraining,[17] sowie regelmäßige Abhärtung, zum Beispiel durch Saunieren und Anwendung von Kneippschen Güssen.[18] Auch Heilfasten wird als Möglichkeit bezeichnet, das Immunsystem zu stärken, dies ist jedoch umstritten. Psychotherapeutische Verfahren, insbesondere Methoden zur Stressbewältigung können die Immunabwehr stärken. Die klinische Hypnotherapie hat suggestive Methoden zur Unterstützung des allgemeinen Immunsystems sowie zur Behandlung einzelner Immunerkrankungen entwickelt.[19]

Sonnenlicht zur Stärkung des Immunsystems

Sonnenlicht kann ebenfalls das Immunsystem stärken. Bereits vor mehr als 100 Jahren war das tägliche Sonnenbad ein fester Bestandteil der Tuberkulosetherapie. Erst neuere Forschung konnte den zugrundeliegenden Mechanismus darstellen: Bestimmte Abwehrzellen besitzen auf ihrer Oberfläche einen so genannten Toll-like Receptor; dieser wird bei einer Bakterieninfektion aktiviert und veranlasst die Abwehrzelle, eine Vorstufe von Vitamin D (25-hydroxyvitamin D) zu produzieren. Gleichzeitig bildet dieselbe Zelle verstärkt einen weiteren Rezeptortyp aus, der auf die Erkennung von Vitamin D spezialisiert ist. Das Sonnenlicht wandelt die Vitamin-D-Vorstufe in das aktive Vitamin D um, welches sich nun an den Rezeptor heftet. Dadurch wird die Abwehrzelle dazu angeregt, das antibakteriell wirkende Cathelizidin zu bilden.

Der Zusammenhang erklärt auch, warum Menschen mit dunkler Haut für Infektionen wie beispielsweise die Hauttuberkulose besonders empfänglich sind: In ihrem Blut finden sich in der Regel deutlich geringere Mengen der Vitamin D-Vorstufe, wobei zusätzliche Einnahme von Vitamin D-Präparaten zur Stärkung des Immunsystems den Mangel leicht ausgleichen kann.

Impfung

Hauptartikel: Impfung

Die Impfung ist eine Methode zur Stärkung des Immunsystems und eine vorbeugende Maßnahme gegen bestimmte Infektionskrankheiten. Bei der aktiven Immunisierung, der häufigsten Form der Impfung, wird das Immunsystem zur Bildung einer Immunkompetenz angeregt, ohne die Erkrankung selbst auszulösen. Hierzu werden abgeschwächte Erreger, tote Erreger oder bestimmte typische Eiweißstoffe (Proteine) und Zuckermoleküle, also Bruchstücke des Erregers, als Impfstoffe in den Körper eingebracht. Die Reaktion des Organismus auf diese Antigene führt zur Bildung spezifischer Antikörper und Gedächtniszellen, die weiterhin im Blut und den Lymphbahnen zirkulieren, wodurch der Schutz gegen diese Antigene lange erhalten bleibt. Falls der Körper erneut mit dem Erreger in Kontakt kommt, hat er durch die Gedächtniszellen eine sehr viel effizientere und schnellere Immunantwort zur Verfügung, die die Erreger bekämpft, bevor es zu einer Erkrankung kommt.

Immunsuppression

Hauptartikel: Immunsuppression

In manchen Situationen ist eine Immunsuppression, also eine medikamentöse Hemmung oder sogar komplette Unterdrückung der Immunantwort notwendig. Dies ist zum Beispiel der Fall bei Patienten, die ein fremdes Organ als Transplantat erhalten haben. Auch bei Autoimmunerkrankungen (inklusive Erkrankungen des rheumatischen Formenkreises) und Allergien ist manchmal eine Immunsuppression notwendig. Das am längsten bekannte immunsuppressive Medikament ist Cortison, die Vorstufe des körpereigenen Hormons Cortisol. Neuere Wirkstoffe wie Tacrolimus oder Cyclosporin A sind jedoch teilweise deutlich wirksamer und/oder haben geringere Nebenwirkungen.

Das Immunsystem schädigende Faktoren

Abgesehen vom Altern gibt es weitere Faktoren, die die Funktion des Immunsystems schädigen und herabsetzen können. Dazu zählen unter anderem eine starke gesundheitliche Beeinträchtigung durch Vorschädigung wie beispielsweise bei chronischen Erkrankungen, eine medikamentöse Immunsuppression wie beispielsweise nach Organtransplantationen, Drogenmissbrauch (auch Nikotin und Alkohol), eine Mangelernährung und damit verbundene Unterversorgung auch mit Vitaminen und Spurenelementen, eine ungesunde oder unausgeglichene Ernährung,[20] die Aufnahme von Umweltgiften aus der Umgebung,[21] die Einwirkung von ionisierender Strahlung, andauernder Stress, zu wenig Schlaf, Bewegungsmangel und auch eine übermäßige Kälteeinwirkung im Sinne von längerer Auskühlung[22] oder gar Unterkühlung (Hypothermie). Im Sport kommt es nach erschöpfenden Belastungen zur vorübergehenden Beeinträchtigung der Abwehrfunktion, die als Open-Window-Phänomen bekannt ist. Eine Kombination von mehreren Faktoren kann natürlich eine verstärkte Belastung für das Immunsystem darstellen.

Auch psychologische Faktoren wie Stress beeinträchtigen das Immunsystem. Stress führt dazu, dass allgemein physiologische Prozesse heruntergefahren werden, welche in hohem Maße Energie erfordern, jedoch nicht für das kurzfristige Überleben notwendig sind. Dazu zählt auch das Immunsystem. Die immunsuppressive Wirkung von Stress wird über die Ausschüttung von Glucocorticoiden (beim Menschen insbesondere Cortisol) aus der Nebennierenrinde bedingt, welche wiederum durch Adrenocorticotropin aus dem Vorderlappen der Hypophyse angestoßen wird, welches wiederum die Produktion von Zytokinen hemmt.[23] Im Falle von chronischem Stress kommt es zu einer Einschränkung des Adaptiven Immunsystems, das seine beschützende Funktion via T- und B-Zellen ausübt.[24]

Evolution

Die komplexe Wechselbeziehung zwischen dem Wirtsorganismus und den Erregern kann unter evolutionären Gesichtspunkten als ein „Angreifer-Verteidiger-System“ angesehen werden. Durch die Abwehrmaßnahmen des Immunsystems kommt es zu einem starken Selektionsdruck, unter dessen Einfluss sich die Erreger immer besser an den (menschlichen) Organismus anpassen müssen, um weiter fortzubestehen. Gleichzeitig üben Krankheitserreger oder Parasiten einen Selektionsdruck auf das Immunsystem des Wirts aus, so kann es zu einer Koevolution von Parasit und Wirt kommen, die zu einer Symbiose führen kann. Dann können die ehemaligen Erreger den Wirt für ihre Vermehrung nutzen, ohne ihn zu schädigen. Ein Beispiel für eine solche erfolgreiche Koevolution sind die Mitochondrien, welche ehemals als körperfremder Schädling in die Zellen von Eukaryoten eindrangen und die sich im Laufe der Jahrmillionen zu einer wichtigen Zellorganelle entwickelten.[25]

Bei Infektionen mit Krankheitserregern, welche an den Menschen als ihren Reservoirwirt angepasst sind, kann eine Erkrankung – bei intaktem Immunsystem und geringer Erregerdosis – entweder überhaupt nicht ausbrechen oder einen weniger schweren Verlauf nehmen. Bei Infektionen mit an den Menschen nicht oder nur wenig angepassten Erregern hängt es von vielen Faktoren (Zustand des Immunsystems, Aggressivität der Erreger) ab, wie schwer eine Erkrankung verläuft und wie lange sie dauert oder ob der Erkrankte an den Folgen der Infektion sogar verstirbt. Die Höhe der durchschnittlichen Letalität einer Erkrankung lässt nach dieser Theorie beispielsweise Rückschlüsse zu, wie gut oder schlecht Krankheitserreger an den Menschen angepasst sind.

Durch diese evolutionäre Betrachtungsweise lassen sich viele Vorgänge der Immunologie besser verstehen und interessante Erkenntnisse zur Stammesgeschichte der Erreger gewinnen. In vielen wissenschaftlichen Studien wurden Hinweise für die Richtigkeit dieser Betrachtungsweise gefunden, es gibt jedoch auch noch genauso viele widersprüchliche Ergebnisse, so dass diese evolutionäre Theorie der Immunologie noch nicht abschließend bewertet werden kann.

Einfluss auf die Partnerwahl

Untersuchungen mit Tieren am Max-Planck-Institut für Immunbiologie erbrachten unter anderem Hinweise auf einen Zusammenhang zwischen dem individuellen Immunsystem eines Lebewesens und der Partnerwahl. Über den Geruchssinn kann die genetische Individualität und Verschiedenheit erfasst und bewertet werden. Die Untersuchungen ergaben: MHC-Peptide erlauben dem Immunsystem, durch die Analyse der MHC-Peptidkomplexe an der Zelloberfläche durch die T-Zellrezeptoren Information über den Status von einzelnen Zellen zu erlangen. Und die Analyse der Struktur dieser Peptide ermöglicht über olfaktorische Neuronen Informationen über den genetischen Status eines Gegenübers zu gewinnen. Dies ist möglich, weil die Struktur der Ankerreste von Peptiden Rückschlüsse auf die Struktur von MHC-Molekülen und damit Rückschlüsse auf die Kodierungskapazität von Organismen erlauben.[26]

Literatur

  • Charles A. Janeway: Immunologie. Spektrum Akademischer Verlag; 5. Auflage (2002) ISBN 3-8274-1079-7.
  • Gerd-Rüdiger Burmester: Taschenatlas der Immunologie. Grundlagen, Labor, Klinik. Thieme, Stuttgart; 2. Auflage (2006) ISBN 3-13-115382-2
  • Abul K. Abbas: Cellular and Molecular Immunology (engl.). W.B. Saunders Company; 5th Update (2005) ISBN 1-4160-2389-5
  • Peter F. Zipfel, Peter Kraiczy, Jens Hellwage: Wie Mikroorganismen der Immunabwehr entgehen – Das tägliche Versteckspiel. Biologie in unserer Zeit 32(6), S. 371–379 (2002), ISSN 0045-205X

Weblinks

 Wikibooks: Medizinische Mikrobiologie: Immunologie – Lern- und Lehrmaterialien
 Wiktionary: Immunsystem – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Dieser Artikel wurde am 28. September 2006 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.

Einzelnachweise

  1. Hochspringen Borghans JA, Noest AJ, De Boer RJ: How Specific Should Immunological Memory Be?. In: The Journal of Immunology. Nr. 163, 1999, S. 569-575 (Online).
  2. Hochspringen S. Al-Attar, E. R. Westra u. a.: Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. In: Biological Chemistry. Band 392, Nummer 4, April 2011, S. 277–289, ISSN 1437-4315. doi:10.1515/BC.2011.042. PMID 21294681. (Review).
  3. Hochspringen M. P. Terns, R. M. Terns: CRISPR-based adaptive immune systems. In: Current opinion in microbiology. Band 14, Nummer 3, Juni 2011, S. 321–327, ISSN 1879-0364. doi:10.1016/j.mib.2011.03.005. PMID 21531607. PMC 3119747 (freier Volltext). (Review).
  4. Hochspringen L. A. Marraffini, E. J. Sontheimer: CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. In: Nature Reviews Genetics. Band 11, Nummer 3, März 2010, S. 181–190, ISSN 1471-0064. doi:10.1038/nrg2749. PMID 20125085. PMC 2928866 (freier Volltext). (Review).
  5. Hochspringen Svedmyr E, Jondal M: Cytotoxic effector cells specific for B Cell lines transformed by Epstein-Barr virus are present in patients with infectious mononucleosis.. In: Proc Natl Acad Sci USA.. Nr. 72(4), 1975, S. 1622-1626 (Lang, Kurz).
  6. Hochspringen Ljunggren HG, Karre K: In search of the 'missing self': MHC molecules and NK cell recognition.. In: Immunol Today.. Nr. 11(7), 1990, S. 237-244, PMID 2201309.
  7. Hochspringen Banchereau, J. and Steinman R. M..: Dendritic cells and the control of immunity. In: Nature. 392, Nr. 6673, 1998, S. 245-252. PMID 9521319.
  8. Hochspringen Henning Engeln: Das große Fressen, in GEO kompakt Nr. 2, März 2005, Seite 132-140 ISSN 1614-6913
  9. Hochspringen Lucas, M. et al.: Dendritic cells prime natural killer cells by trans-presenting interleukin 15. In: Immunity. 26, Nr. 4, 2007, S. 503-517.
  10. Hochspringen Sakaguchi S, Sakaguchi N et al.: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. In: J Immunol.. Nr. 155(3), 1995, S. 1151-1164, PMID 7636184.
  11. Hochspringen Campanelli R, Palermo B et al.: Human CD8 co-receptor is strictly involved in MHC-peptide tetramer-TCR binding and T cell activation. In: Int Immunol.. Nr. 14(1), 2002, S. 39-44 (ArtikelAbstract).
  12. Hochspringen June CH, Ledbetter JA et al.: Role of the CD28 receptor in T-cell activation. In: Immunol Today. Nr. 11(6), 1990, S. 211-216, PMID 2162180.
  13. Hochspringen Bubanovic I, Najman S: „Failure of anti-tumor immunity in mammals--evolution of the hypothesis“ Acta Biotheor. 2004;52(1): s. 57-64. PMID 14963404
  14. Hochspringen Klein MA, Frigg R et al.: A crucial role for B cells in neuroinvasive scrapie. In: Nature. Nr. 390(6661), 1997, S. 687-690, PMID 9414161 (Artikel).
  15. Hochspringen Irwin M, Mascovich A et al.: Partial sleep deprivation reduces natural killer cell activity in humans. In: Psychosomatic Medicine. Nr. 56(6), 1994, S. 493-498 (Abstract).
  16. Hochspringen Schedlowski M, Schmidt RE: Streß und Immunsystem. In: Naturwissenschaften. Nr. 83(5), 1996, S. 214-220, PMID 8668232.
  17. Hochspringen Gmünder, Felix K., Sport und Immunologie, Vorlesung an der ETH Zürich (PowerPoint Presentation)
  18. Hochspringen Dugue B, Leppanen E: Adaptation related to cytokines in man: effects of regular swimming in ice-cold water. In: Clinical Physiology. Nr. Volume 20(2), 2000, S. 114–121 (Artikel).
  19. Hochspringen Auerbach J Suggestions with Autoimmune Disease, in: D. Corydon Hammond (Hrsg.), Handbook of Hypnotic Suggestions and Metaphors, New York, London (Norton) 1990, 241f.
  20. Hochspringen Forschungsnachrichten.de: Mit Aminosäuren der Erkältung den Kampf ansagen (29. September 2005)
  21. Hochspringen Bayer-Oglesby L, Grize L et al.: Decline of Ambient Air Pollution Levels and Improved Respiratory Health in Swiss Children. In: Environmental Health Perspectives. Nr. 113(11), 2005, S. 1632-1637 (ArtikelAbstract).
  22. Hochspringen Johnson C, Eccles R: Acute cooling of the feet and the onset of common cold symptoms. In: Family Practice. Nr. 22(6), 2005, S. 608-613 (Abstract).
  23. Hochspringen Manfred Schedlowski, Uwe Tewes: Psychoneuroimmunologie. Spektrum Akademischer Verlag, 1996, ISBN 3-86025-228-3
  24. Hochspringen John P.J. Pinel, Biopsychology, Pearson Education 2009
  25. Hochspringen Dyall SD, Brown MT, Johnson PJ: Ancient invasions: from endosymbionts to organelles. In: Science. Nr. 304(5668), 2004, S. 253-257, PMID 15073369.
  26. Hochspringen Boehm, Thomas 2005 Qualitätskontrolle im Immunsystem. (Steuerung der Partnerwahl) Max-Planck-Institut für Immunbiologie, Freiburg, Beteiligte Abteilungen: Entwicklung des Immunsystems

Bildgebendes Verfahren (Medizin)

Wechseln zu: Navigation, Suche

Bildgebendes Verfahren (auch Bildgebende Diagnostik oder kurz Bildgebung) fasst als Oberbegriff in der Medizin und speziell der medizinischen Diagnostik verschiedene apparative Untersuchungsmethoden zusammen, die (zwei- oder dreidimensionale) Bilddaten von Organen und Strukturen des menschlichen Körpers liefern und vor allem zur Diagnose krankheitsbedingter Veränderungen eingesetzt werden.

Bildgebende Verfahren beruhen auf Medizingeräten, die in diesem Zusammenhang auch als Modalitäten bezeichnet werden[1]; gelegentlich findet man den Begriff „Modalität“ jedoch auch als Synonym für „Bildgebendes Verfahren“[2].

Begriffsgeschichte

Die Begriffe bildgebendes Verfahren, bildgebendes System oder bildgebende Methode finden vom Ende der 1970er Jahre an zunehmend Verwendung in der medizinischen Fachliteratur. Frühe Belege stammen aus den Jahren 1977 (»… Röntgen u. a. bildgebende Methoden (Röntgentomographie, Xerographie) …«[3]), 1979 (»… Ultraschall als überlegene bildgebende Methode …«[4]) und 1980 (Buchtitel: »Bildgebende Systeme für die medizinische Diagnostik …«[5]). Die Bezeichnung verbreitete sich also ungefähr gleichzeitig mit der wachsenden Zahl neuer bildgebender Verfahren (über das klassische Röntgen hinaus), wodurch die Prägung eines neuen, allgemeineren Oberbegriffs erst erforderlich wurde.

Einteilung der Verfahren

Systematisieren lassen sich die bildgebenden Verfahren nach verschiedenen Gesichtspunkten wie etwa nach ihrer Bilderzeugung mittels

oder nach der Art der erzeugten Bilddaten (Schnittbilder, Projektionsbilder, Oberflächenabbildungen). Darüber hinaus wird unterschieden zwischen anatomischer und funktioneller Bildgebung.

Die Auswahl erfolgt in der Regel durch den Arzt und beruht auf den Anforderungen, die der Diagnostik gestellt werden. So werden beispielsweise Knochen in Röntgenaufnahmen gut dargestellt, die Szintigraphie kann unter anderem die Aktivitätsverteilung in der Schilddrüse darstellen.

Die meisten Verfahren liefern nur statische Aufnahmen. Ultraschall und Endoskopie, teilweise auch MRT, können für Videoaufnahmen und in Echtzeit während Operationen eingesetzt werden.

Die radiologischen Verfahren unterscheiden sich zusätzlich in der Strahlenexposition und der daraus folgenden Dosis. Demnach sollte nach Röntgenverordnung die Auswahl nach dem ALARA-Prinzip (so viel wie nötig, so gering wie möglich) erfolgen.

Literatur

Einzelnachweise

  1. Hochspringen Christian Johner, Peter Haas (Hrsg.): Praxishandbuch IT im Gesundheitswesen: Erfolgreich einführen, entwickeln, anwenden und betreiben. Hanser, München 2009, ISBN 3-446-41556-4, S. 233. (eingeschränkte Vorschau in der Google-Buchsuche)
  2. Hochspringen H. Ric Harnsberger, Patrica A. Hudgins, Richard H. Wiggins III, H. Christian Davidson (Hrsg.): PocketRadiologist – Kopf und Hals: Die 100 Top-Diagnosen. Urban & Fischer, München 2003 (Originaltitel: PocketRadiologist – Head and Neck: Top 100 Diagnoses, übersetzt von Christian Georg), ISBN 978-3-437-23600-6, S. 86, 200, 269, 302. (eingeschränkte Vorschau in der Google-Buchsuche)
  3. Hochspringen H. Buss: Biomedizinische Technik. In: Naturwissenschaften. Bd. 64, Nr. 2, 1977, S. 76–81, doi:10.1007/BF00437347 (PMID 840312).
  4. Hochspringen H. Lutz, R. Ehler: 104. Akutes Abdomen – Entscheidungshilfen durch Ultraschalldiagnostik. In: Langenbecks Archiv für Chirurgie. Bd. 349, Nr. 1, 1979, S. 487–490, doi:10.1007/BF01729562.
  5. Hochspringen Erich Krestel (Hrsg.): Bildgebende Systeme für die medizinische Diagnostik: Grundlagen, Technik, Bildgüte. Siemens Aktiengesellschaft, Berlin München 1980, ISBN 3-8009-1300-3.

Physiologie

Wechseln zu: Navigation, Suche

Die Physiologie (altgr. φύσις phýsis ‚Natur‘ und λόγος lógos ‚Lehre‘, ‚Vernunft‘ bzw. physiologica = Naturkunde) ist als Teilgebiet der Biologie die Lehre von den physikalischen und biochemischen Vorgängen in den Zellen, Geweben und Organen aller Lebewesen; sie bezieht auch das Zusammenwirken aller Lebensvorgänge im gesamten Organismus in ihre Betrachtung ein. Ziel der Physiologie ist es, möglichst auf molekularer Ebene auch Vorhersagen über das Verhalten eines betrachteten Systems (zum Beispiel Stoffwechsel, Bewegung, Keimung, Wachstum, Fortpflanzung) zu formulieren.

Die Bezeichnung Physiologie wurde um 1525 von Jean François Fernel geprägt. Physiologisch geforscht und ausgebildet wird in der Biologie, der Medizin, der Psychologie und in der Sportwissenschaft.

In der Umgangssprache von Ärzten wird physiologisch auch – ohne unmittelbaren Bezug zum Fachgebiet der Physiologie – im Sinne von normal, beim gesunden Menschen auftretend, nicht krankhaft verwendet. Dementsprechend bezeichnet unphysiologisch oder pathologisch eine Abweichung von den normalen, beim gesunden Menschen auftretenden oder wünschenswerten Lebensvorgängen.

Hauptgebiete der Physiologie

Die Themengebiete der Physiologie sind außerordentlich vielfältig. Insbesondere arbeitet sie mit der Biochemie zusammen, welche früher auch ‚Physiologische Chemie‘ genannt wurde. Der Blick der Physiologie ist auf die Dynamik biologischer Vorgänge und deren kausale Zusammenhänge gerichtet; sie analysiert also eher Veränderungen wie etwa Informationsverarbeitung denn statische Zustände. Die wichtigsten Werkzeuge – Versuchsanordnungen und Messverfahren – kommen im Fachgebiet Physiologie aus der Physik und der Chemie.

Abgeleitet von der traditionellen Gliederung der Biologie gibt es die beiden Schwerpunkte

Neben Pflanzen, Tieren und Menschen befasst sich die Physiologie auch mit allen anderen Lebewesen.

Die Physiologie des Menschen ist im Fach Medizin ein eigenständiges Teilgebiet. Ohne die Physiologie wäre eine gezielte Pharmakologie nicht möglich; denn sie kann Wirkungen, Eigenschaften und Nachteile von Medikamenten teilweise beschreiben und auch voraussagen.

Physiologen analysieren die grundlegenden Lebensprozesse auf unterschiedlichen Ebenen der Komplexität; Beispiele hierfür sind:

Auch krankhafte Zustände werden untersucht, wofür sich mit der Pathophysiologie ein eigenes Teilgebiet etabliert hat. Die Grenzen der Physiologie zu Anatomie, Biochemie, Molekularbiologie, Psychologie und Neurobiologie sind fließend.

An deutschen Universitäten ist die Physiologie des Menschen meist an den medizinischen Fakultäten beheimatet und zählt mit Biochemie, Anatomie und Psychologie sowie den drei Naturwissenschaften Biologie, Chemie und Physik zu den vorklinischen Fächern, die im Rahmen des Physikums auch eine staatliche Zwischenprüfung darstellen.

Ausbildung zum Facharzt für Physiologie in Deutschland

Um in Deutschland nach einem abgeschlossenen Medizinstudium als „Facharzt für Physiologie“ tätig zu werden, bedarf es einer vierjährigen Weiterbildungszeit. Auf diese kann ein Jahr in einem anderen medizinischen Fachgebiet angerechnet werden.

Siehe auch

Literatur

Humanmedizin

Pflanzenphysiologie

  • Peter Schopfer, Axel Brennicke: Pflanzenphysiologie. Begründet von Hans Mohr. 6. Auflage. Elsevier, München 2006, ISBN 978-3-8274-1561-5.
  • Walter Larcher: Ökophysiologie der Pflanzen. Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt. 6. Auflage. Ulmer Verlag, Stuttgart 2001, ISBN 3-8252-8074-8.

Tierphysiologie

  • Heinz Penzlin: Lehrbuch der Tierphysiologie. 7. Auflage. Spektrum Akademischer Verlag, 2005, ISBN 3-8274-0170-4.

 

Physik

Wechseln zu: Navigation, Suche
Dieser Artikel beschreibt die Naturwissenschaft Physik; zum gleichnamigen Werk von Aristoteles siehe Physik (Aristoteles); zum gleichnamigen Werk der Band Kassierer siehe Physik (Album).
Verschiedene Beispiele physikalischer Phänomene

Die Physik (über lateinisch physica ‚Naturlehre‘ aus griechisch φυσική physikē ‚wissenschaftliche Erforschung der Naturerscheinungen‘, ‚Naturforschung‘)[1][2] untersucht die grundlegenden Phänomene in der Natur. In der Absicht, deren Eigenschaften und Verhalten anhand von quantitativen Modellen und Gesetzmäßigkeiten zu erklären, befasst sie sich insbesondere mit Materie und Energie und deren Wechselwirkungen in Raum und Zeit. Die Arbeitsweise der Physik besteht im Allgemeinen in einem Zusammenspiel experimenteller Methoden und theoretischer Modellbildung. Physikalische Theorien bewähren sich in der Anwendbarkeit auf Systeme der Natur, indem sie bei Kenntnis von Anfangszuständen derselben möglichst genaue Vorhersagen über resultierende Endzustände erlauben. Fortschritte in der Physik bestehen in der Bereitstellung oder Weiterentwicklung von Theorien und von experimentellen Hilfsmitteln und Methoden. Sie führen beispielsweise zur Anwendbarkeit auf weitere Systeme, zu genaueren Beschreibungen, Vereinfachungen des theoretischen Apparats oder zu neuen oder erleichterten praktischen Anwendungen.

Fachrichtungen wie Chemie, Geologie, Biologie und Medizin sowie viele Ingenieurwissenschaften nutzen intensiv Erkenntnisse und Modelle aus der Physik. Die Methoden werden, oft von Physikern, auch auf soziale Systeme einschließlich des Finanzsektors angewandt.

Geschichte von Begriff und Disziplin der Physik

Hauptartikel: Geschichte der Physik

Die Disziplin der Physik hat ihre Ursprünge in den Theorien und Einzelstudien antiker Wissenschaftler. Zwar wird die Physik hier als ein Teilgebiet der Philosophie verstanden; sie hat aber, etwa in der maßgeblichen Systematik und Durchführung bei Aristoteles, einen eigenständigen Erkenntnisbereich und eine methodische Selbständigkeit. Mitte des 13. und im Laufe des 14. Jahrhunderts plädieren mehrere Philosophen und Naturforscher – meist in Personalunion – für eine größere Eigenständigkeit der Naturerkenntnis; – eine Entwicklung, die sich in der Tat nicht aufhalten ließ und, in Aufnahme dieser Tendenzen, im 16. und 17. Jahrhundert in die Entwicklung einer Methodologie der physikalischen Erkenntnis mündet, die modernen Kriterien an experimentelle Standards nahe kommt, namentlich mit Galileo Galilei und Isaac Newton.

Damit etabliert sich die Physik endgültig als eigenständige Disziplin hinsichtlich ihrer Methode, ihres Gegenstandsbereichs, ihrer wissenschaftssystematischen und institutionellen Verortung. Diese neue Methodik teilt die Physik im Wesentlichen in zwei große Gebiete auf. Die theoretische Physik beschäftigt sich vorwiegend mit formellen Beschreibungen und den Naturgesetzen. Sie abstrahiert Vorgänge und Erscheinungen in der wirklichen Natur in Form eines Systems von Modellen, allgemeingültigen Theorien und Naturgesetzen sowie intuitiv gewählter Hypothesen. Bei der Formulierung von Theorien und Gesetzen bedient sie sich vielfach der Methoden der Mathematik und der Logik. Ziel dieser Betrachtung ist die Vorhersage des Verhaltens eines Systems sowie die experimentelle Prüfung der Gültigkeit und Vorhersagekraft der gewählten Hypothesen durch Vergleich des vorhergesagten Verhaltens mit den Vorgängen und Erscheinungen in der wirklichen Natur. Diese Überprüfung in Form reproduzierbarer Messungen oder durch Beobachtung natürlicher Phänomene macht das Teilgebiet der Experimentalphysik aus.

Die Physik steht in enger Verbindung zu den Ingenieurwissenschaften und den meisten Naturwissenschaften von der Astronomie und Chemie bis zur Biologie und den Geowissenschaften. Die Abgrenzung zu diesen Wissenschaften ergibt sich historisch aus dem Ursprung der Physik in der Philosophie. Insbesondere mit dem Aufkommen neuer Wissenschaftsdisziplinen wird eine inhaltliche Abgrenzung der Physik zu diesen anderen Feldern jedoch erschwert. Die Physik wird häufig als grundlegende oder fundamentale Naturwissenschaft aufgefasst, die sich stärker als die anderen Naturwissenschaften mit den Grundprinzipien befasst, die die natürlichen Vorgänge bestimmen.

In der heutigen Physik ist vor allem die Grenze zur Chemie, der Übergang von der Physik der Atom- und Molekülphysik, zur Quantenchemie, fließend. Allerdings konzentriert sich die Chemie häufig auf komplexere Strukturen (Moleküle), während die Physik meist die grundlegende Materie erforscht. Zur Abgrenzung gegenüber der Biologie wird die Physik oftmals als die Wissenschaft von der unbelebten Natur bezeichnet, womit jedoch eine Beschränkung impliziert wird, die so in der Physik nicht existiert. Die Ingenieurwissenschaften werden durch ihren Bezug zur praktischen Anwendung von der Physik abgegrenzt, da in der Physik das Verständnis der grundlegenden Mechanismen gegenüber der Anwendung im Vordergrund steht. Die Astronomie hat keine Möglichkeit Laborexperimente durchzuführen und ist daher allein auf Naturbeobachtung angewiesen, was zur Abgrenzung gegen die Physik herangezogen wird.

Methodik

Der Prozess der Erkenntnisgewinnung in der Physik verläuft in enger Verzahnung von Experiment und Theorie, besteht also aus empirischer Datengewinnung und -auswertung und gleichzeitig dem Erstellen theoretischer Modelle zu ihrer Erklärung. Dennoch haben sich im Verlauf des 20. Jahrhunderts Spezialisierungen herausgebildet, die insbesondere die professionell betriebene Physik heute prägen. Demnach lassen sich grob Experimentalphysik und theoretische Physik voneinander unterscheiden.

Experimentalphysik

Multimeter für elektrische Messungen
Hauptartikel: Experimentalphysik

Während manche Naturwissenschaften wie etwa die Astronomie und die Meteorologie sich methodisch weitgehend auf die Beobachtungen ihres Untersuchungsgegenstandes beschränken müssen, steht in der Physik das Experiment im Vordergrund. Dabei versucht die Experimentalphysik durch Entwurf, Aufbau, Durchführung und Auswertung von Experimenten Gesetzmäßigkeiten in der Natur aufzuspüren und mittels empirischer Modelle zu beschreiben. Sie versucht einerseits physikalisches Neuland zu betreten, andererseits überprüft sie von der theoretischen Physik gemachte Vorhersagen.

Grundlage eines physikalischen Experimentes ist es, die Eigenschaften eines zuvor präparierten physikalischen Systems, zum Beispiel eines Teilchenbeschleunigers, einer Vakuumkammer mit Detektoren oder eines geworfenen Steins durch Messung in Zahlenform auszudrücken, etwa als Länge einer Teilchenspur, Impulshöhe eines elektrischen Spannungspulses oder als Aufprallgeschwindigkeit.

Konkret werden entweder nur die zeitunabhängigen (statischen) Eigenschaften eines Objektes gemessen oder es wird die zeitliche Entwicklung (Dynamik) des Systems untersucht, etwa indem Anfangs- und Endwerte einer Messgröße vor und nach dem Ablauf eines Vorgangs bestimmt werden oder indem kontinuierliche Zwischenwerte festgestellt werden.

Theoretische Physik

Die Lichtuhr, ein bekanntes Gedankenexperiment
Während bei der Veröffentlichung der Allgemeinen Relativitätstheorie 1916 nur die Periheldrehung des Merkurs einen Hinweis auf die Richtigkeit gab, gehört die Zeitdilatation bei GPS-Satelliten heute zum Alltag.

Die Aufgabe der theoretischen Physik wiederum besteht darin, die empirischen Modelle der Experimentalphysik mathematisch auf bekannte Grundlagentheorien zurückzuführen oder, falls dies nicht möglich ist, Hypothesen für eine neue Theorie zu entwickeln, die dann experimentell überprüft werden können. Sie leitet weiterhin aus bereits bekannten Theorien empirisch überprüfbare Voraussagen ab.

Bei der Entwicklung eines Modells wird grundsätzlich die Wirklichkeit idealisiert; man konzentriert sich zunächst nur auf ein vereinfachtes Bild, um dessen Aspekte zu überblicken und zu erforschen; nachdem das Modell für diese Bedingungen ausgereift ist, wird es weiter verallgemeinert.

Zur theoretischen Beschreibung eines physikalischen Systems benutzt man die Sprache der Mathematik. Seine Bestandteile werden dazu durch mathematische Objekte wie zum Beispiel Skalare oder Vektoren repräsentiert, die in durch Gleichungen festgelegten Beziehungen zueinander stehen. Der Zweck des Modells ist es, aus bekannten Größen unbekannte zu errechnen und damit zum Beispiel das Ergebnis einer experimentellen Messung vorherzusagen. Diese auf Quantitäten konzentrierte Sichtweise unterscheidet die Physik maßgeblich von der Philosophie und hat zur Folge, dass nicht quantifizierbare Modelle, wie das Bewusstsein, nicht als Teil der Physik betrachtet werden.

Das fundamentale Maß für den Erfolg einer naturwissenschaftlichen Theorie ist die Übereinstimmung mit Beobachtungen und Experimenten. Durch den Vergleich mit dem Experiment lassen sich der Gültigkeitsbereich und die Genauigkeit einer Theorie ermitteln, allerdings lässt sie sich niemals "beweisen". Um eine Theorie zu widerlegen, bzw. um die Grenzen ihres Gültigkeitsbereiches zu demonstrieren, genügt im Prinzip ein einziges Experiment, sofern es reproduzierbar ist.

Experimentalphysik und theoretische Physik stehen also in steter Wechselbeziehung zueinander. Es kann allerdings vorkommen, dass Ergebnisse der einen Disziplin der anderen vorauseilen: So sind derzeit viele Voraussagen der Stringtheorie nicht experimentell überprüfbar; andererseits sind viele teilweise extrem genau gemessene Werte aus dem Gebiet der Kernphysik zum heutigen Zeitpunkt (2009) durch die zugehörige Theorie, die Quantenchromodynamik, nicht berechenbar.

Weitere Aspekte

Zusätzlich zu dieser grundlegenden Teilung der Physik unterscheidet man manchmal noch weitere methodische Unterdisziplinen, vor allem die mathematische Physik und die angewandte Physik. Auch die Arbeit mit Computersimulationen hat innerhalb der letzten Jahre Züge eines eigenen Bereiches der Physik angenommen.

Mathematische Physik

Hauptartikel: Mathematische Physik

Die mathematische Physik wird gelegentlich als Teilgebiet der theoretischen Physik betrachtet, unterscheidet sich von dieser jedoch darin, dass ihr Studienobjekt nicht konkrete physikalische Phänomene sind, sondern die Ergebnisse der theoretischen Physik selbst. Sie abstrahiert damit von jedweder Anwendung und interessiert sich stattdessen für die mathematischen Eigenschaften eines Modells, insbesondere seine tiefer liegenden Symmetrien. Auf diese Weise entwickelt sie Verallgemeinerungen und neue mathematische Formulierungen bereits bekannter Theorien, die dann wiederum als Arbeitsmaterial der theoretischen Physiker in der Modellierung empirischer Vorgänge Einsatz finden können.

Angewandte Physik

Hauptartikel: Angewandte Physik

Die angewandte Physik steht dagegen in (unscharfer) Abgrenzung zur Experimentalphysik, teilweise auch zur theoretischen Physik. Ihr wesentliches Kennzeichen ist, dass sie ein gegebenes physikalisches Phänomen nicht um seiner selbst willen erforscht, sondern um die aus der Untersuchung hervorgegangenen Erkenntnisse zur Lösung eines (in der Regel) nicht-physikalischen Problems einzusetzen. Ihre Anwendungen liegen auf dem Gebiet der Technik oder Elektronik aber auch in den Wirtschaftswissenschaften, wo im Risikomanagement Methoden der theoretischen Festkörperphysik zum Einsatz kommen. Auch gibt es die interdisziplinären Bereiche der Medizinphysik, physikalischen Chemie, Astrophysik und Biophysik.

Simulation und Computerphysik

Hauptartikel: Computerphysik

Mit der fortschreitenden Entwicklung der Rechensysteme hat sich in den letzten Jahrzehnten des 20. Jahrhunderts, beschleunigt seit etwa 1990, die Computersimulation als neue Methodik innerhalb der Physik entwickelt. Computersimulationen werden häufig als Bindeglied zwischen Theorie und Experiment verwendet, um Vorhersagen aus einer Theorie zu gewinnen, andererseits können Simulationen auch in Form einer effektiven Theorie, die ein experimentelles Ergebnis nachmodelliert, einen Impuls an die theoretische Physik zurückgeben. Naturgemäß hat dieser Bereich der Physik zahlreiche Anknüpfungspunkte an die Informatik.

Theoriengebäude

Das Theoriengebäude der Physik beruht in seinem Ursprung auf der klassischen Mechanik. Diese wurde im 19. Jahrhundert um weitere Theorien ergänzt, insbesondere den Elektromagnetismus und die Thermodynamik. Die moderne Physik beruht auf zwei Erweiterungen aus dem 20. Jahrhundert, der Relativitätstheorie und der Quantenphysik, die Grundprinzipien der klassischen Mechanik verallgemeinert haben. Beide Theorien enthalten die klassische Mechanik über das sogenannte Korrespondenzprinzip als Grenzfall und haben daher einen größeren Gültigkeitsbereich als diese. Während die Relativitätstheorie teilweise auf denselben konzeptionellen Grundlagen basiert wie die klassische Mechanik, löst sich die Quantenphysik deutlich davon.

Klassische Mechanik

Hauptartikel: Klassische Mechanik

Die klassische Mechanik wurde im 16. und 17. Jahrhundert maßgeblich von Galileo Galilei und Isaac Newton begründet. Aufgrund der zu dieser Zeit noch recht begrenzten technischen Möglichkeiten sind die Vorgänge, die die klassische Mechanik beschreibt, weitgehend ohne komplizierte Hilfsmittel beobachtbar, was sie anschaulich erscheinen lässt. Die klassische Mechanik behandelt Systeme mit wenigen massiven Körpern, was sie von der Elektrodynamik und der Thermodynamik unterscheidet. Raum und Zeit sind dabei nicht Teil der Dynamik, sondern ein unbewegter Hintergrund, vor dem physikalische Prozesse ablaufen und Körper sich bewegen. Für sehr kleine Objekte tritt die Quantenphysik an die Stelle der klassischen Mechanik, während die Relativitätstheorie zur Beschreibung von Körpern mit sehr großen Massen und Energien geeignet ist.

Die mathematische Behandlung der klassischen Mechanik wurde im späten 18. und frühen 19. Jahrhundert in Form des Lagrange-Formalismus und des Hamilton-Formalismus entscheidend vereinheitlicht. Diese Formalismen sind auch mit der Relativitätstheorie anwendbar und sind daher ein bedeutender Teil der klassischen Mechanik. Obwohl die klassische Mechanik nur für mittelgroße, anschauliche Systeme gültig ist, ist die mathematische Behandlung komplexer Systeme bereits im Rahmen dieser Theorie mathematisch sehr anspruchsvoll. Die Chaostheorie befasst sich in großen Teilen mit solchen komplexen Systemen der klassischen Mechanik und ist derzeit (2009) ein aktives Forschungsgebiet.

Elektrodynamik

Hauptartikel: Elektrodynamik
Nach James Clerk Maxwell sind die bekannten Maxwell-Gleichungen des Elektromagnetismus benannt

In der Elektrodynamik werden Phänomene mit bewegten elektrischen Ladungen in Wechselwirkung mit zeitlich veränderlichen elektrischen und magnetischen Feldern beschrieben. Um die Entwicklung der Theorien der Elektrizität und des Magnetismus im 18. und 19. Jahrhundert zusammenzuführen, wurde eine Erweiterung des Theoriengebäudes der klassischen Mechanik notwendig. Ausgangspunkt war das von Michael Faraday entdeckte Induktionsgesetz und die nach Hendrik Antoon Lorentz benannte Lorentzkraft auf eine bewegte elektrische Ladung in einem Magnetfeld. Die Gesetze der Elektrodynamik wurden im 19. Jahrhundert von James Clerk Maxwell zusammengefasst und in Form der Maxwell-Gleichungen erstmals vollständig formuliert. Grundsätzlich wurden elektrodynamische Systeme mit den Methoden der klassischen Mechanik behandelt, allerdings ermöglichen die Maxwell-Gleichungen auch eine Wellenlösung, die elektromagnetische Wellen wie das Licht beschreiben. Diese Theorie brachte unter anderem in Form der Wellenoptik auch einen eigenen Formalismus hervor, der sich grundlegend von dem der klassischen Mechanik unterscheidet. Besonders die Symmetrien der Elektrodynamik sind mit denen der klassischen Mechanik unvereinbar. Dieser Widerspruch zwischen den beiden Theoriegebäuden wurde durch die spezielle Relativitätstheorie gelöst. Die Wellenoptik ist in Form der nichtlinearen Optik noch heute (2011) ein aktives Forschungsgebiet.

Thermodynamik

Hauptartikel: Thermodynamik

Etwa gleichzeitig mit der Elektrodynamik entwickelte sich mit der Thermodynamik ein weiterer Theorienkomplex, der sich grundlegend von der klassischen Mechanik unterscheidet. Im Gegensatz zur klassischen Mechanik stehen in der Thermodynamik nicht einzelne Körper im Vordergrund, sondern ein Ensemble aus vielen kleinsten Bausteinen, was zu einem radikal anderen Formalismus führt. Die Thermodynamik eignet sich damit zur Behandlung von Medien aller Aggregatzustände. Die Quantentheorie und die Relativitätstheorie lassen sich in den Formalismus der Thermodynamik einbetten, da sie nur die Dynamik der Bausteine des Ensembles betreffen, aber den Formalismus zur Beschreibung thermodynamischer Systeme nicht prinzipiell ändern.

Die Thermodynamik eignet sich beispielsweise zur Beschreibung von Wärmekraftmaschinen aber auch zur Erklärung vieler moderner Forschungsgegenstände wie Supraleitung oder Suprafluidität. Besonders im Bereich der Festkörperphysik wird daher auch heute (2009) noch viel mit den Methoden der Thermodynamik gearbeitet.

Relativitätstheorie

Briefmarke mit Albert Einstein und seiner berühmten Formel E=mc²
Hauptartikel: Relativitätstheorie

Die von Albert Einstein begründete Relativitätstheorie führt ein völlig neues Verständnis der Phänomene Raum und Zeit ein. Danach handelt es sich bei diesen nicht um universell gültige Ordnungsstrukturen, sondern räumliche und zeitliche Abstände werden von verschiedenen Beobachtern unterschiedlich beurteilt. Raum und Zeit verschmelzen zu einer vierdimensionalen Raumzeit. Die Gravitation wird auf eine Krümmung dieser Raumzeit zurückgeführt, die durch die Anwesenheit von Masse bzw. Energie hervorgerufen wird. In der Relativitätstheorie wird erstmals die Kosmologie zu einem naturwissenschaftlichen Thema. Die Formulierung der Relativitätstheorie gilt als der Beginn der modernen Physik, auch wenn sie häufig als Vollendung der klassischen Physik bezeichnet wird.

Quantenphysik

Hauptartikel: Quantenphysik

Die Quantenphysik beschreibt die Naturgesetze im atomaren und subatomaren Bereich und bricht noch radikaler mit klassischen Vorstellungen als die Relativitätstheorie. In der Quantenphysik sind auch physikalische Größen selbst Teil des Formalismus und keine bloßen Kenngrößen mehr, die ein System beschreiben. Der Formalismus unterscheidet also zwischen zwei Typen von Objekten, den Observablen, die die Größen beschreiben und den Zuständen, die das System beschreiben. Ebenso wird der Messprozess aktiv in die Theorie miteinbezogen. Dies führt in bestimmten Situationen zur Quantisierung der Größenwerte. Das heißt, die Größen nehmen stets nur bestimmte diskrete Werte an. In der Quantenfeldtheorie, der am weitesten entwickelten relativistischen Quantentheorie, tritt auch Materie nur in Portionen, den Elementarteilchen oder Quanten, in Erscheinung.

Die Gesetze der Quantenphysik entziehen sich weitgehend der menschlichen Anschauung, und über ihre Interpretation herrscht auch heute noch kein Konsens. Dennoch zählt sie hinsichtlich ihres empirischen Erfolges zu dem am besten gesicherten Wissen der Menschheit überhaupt.

Themenbereiche der modernen Physik

Die Theorien der Physik kommen in verschiedenen Themenbereichen zum Einsatz. Die Einteilung der Physik in Unterthemen ist nicht eindeutig und die Abgrenzung der Unterthemen gegeneinander ist dabei ähnlich schwierig wie die Abgrenzung der Physik zu anderen Wissenschaften. Es gibt dementsprechend viele Überschneidungen und gegenseitige Beziehungen der verschiedenen Bereiche zueinander. Hier wird eine Sammlung von Themengebieten nach betrachteter Größenordnung der Objekte dargestellt und im Zuge dessen auf Themengebiete verwiesen, die damit verwandt sind. Die aufgeführten Themen lassen sich nicht eindeutig einer Theorie zuordnen, sondern bedienen sich je nach dem untersuchten Gegenstand verschiedener theoretischer Konzepte.

Teilchenphysik

Hauptartikel: Elementarteilchenphysik

Die Teilchenphysik befasst sich mit Elementarteilchen und ihren Wechselwirkungen untereinander. Die moderne Physik kennt vier Grundkräfte:

Diese Wechselwirkungen werden durch den Austausch sogenannter Eichbosonen beschrieben. Die Teilchenphysik klammert dabei die Gravitation derzeit (2009) aus, da es noch keine Theorie der Quantengravitation gibt, die die gravitativen Wechselwirkungen von Elementarteilchen vollständig beschreiben kann. In der Teilchenphysik werden relativistische Quantentheorien zur Beschreibung der Phänomene verwendet.

Eines der Ziele der Teilchenphysik ist es, alle Grundkräfte in einem vereinheitlichten Gesamtkonzept zu beschreiben (Weltformel). Bisher ist es jedoch lediglich gelungen, die elektromagnetische Wechselwirkung als Vereinigung der elektrischen und der magnetischen Wechselwirkung darzustellen und ebenso die elektromagnetische Wechselwirkung und die schwache Wechselwirkung zu einer sogenannten elektroschwachen Wechselwirkung zu vereinigen. Zur Vereinigung der elektroschwachen und der starken Wechselwirkung wurde unter anderem die Theorie der Supersymmetrie erdacht, die bislang jedoch nicht experimentell bestätigt werden konnte. Die größten Schwierigkeiten treten wie bereits erwähnt im Bereich der Gravitationskraft auf, da noch keine Theorie der Quantengravitation vorliegt, aber Elementarteilchen nur im Rahmen der Quantentheorie beschrieben werden können.

Typische Experimente zur Überprüfung der Theorien der Teilchenphysik werden an Teilchenbeschleunigern mit hohen Teilchenenergien durchgeführt. Um hohe Kollisionsenergien zu erreichen, werden dabei vor allem Collider-Experimente eingesetzt, bei denen Teilchen gegeneinander und nicht auf ein festes Ziel geschossen werden. Daher wird der Begriff der Hochenergiephysik oft nahezu deckungsgleich mit dem Begriff der Teilchenphysik verwendet. Der Teilchenbeschleuniger mit der derzeit (2011) höchsten Kollisionsenergie ist der Large Hadron Collider. Neutrinodetektoren wie der Super-Kamiokande sind speziell zur Erforschung der Eigenschaften von Neutrinos konzipiert und stellen damit eine zwar spezielle, aber dennoch bedeutende Experimentklasse dar.

Hadronen- und Atomkernphysik

Hauptartikel: Quantenchromodynamik und Kernphysik

Die Elementarteilchen, die der starken Wechselwirkung unterliegen, die sogenannten Quarks, kommen nicht einzeln, sondern immer nur in gebundenen Zuständen, den Hadronen, vor, zu denen unter anderem das Proton und das Neutron gehören. Die Hadronenphysik hat viele Überschneidungen mit der Elementarteilchenphysik, da viele Phänomene nur erklärt werden können, indem berücksichtigt wird, dass die Hadronen aus Quarks aufgebaut sind. Die Beschreibung der starken Wechselwirkung durch die Quantenchromodynamik, eine relativistische Quantenfeldtheorie, kann jedoch die Eigenschaften der Hadronen nicht vorhersagen, weshalb die Untersuchung dieser Eigenschaften als eigenständiges Forschungsgebiet aufgefasst wird. Es wird also eine Erweiterung der Theorie der starken Wechselwirkung für kleine Energien angestrebt, bei denen sich die Hadronen bilden.

Atomkerne stellen gegenüber Elementarteilchen die nächste Komplexitätsstufe dar. Sie bestehen aus mehreren Nukleonen, also Protonen und Neutronen, deren Wechselwirkungen untersucht werden. In Atomkernen herrschen die starke und die elektromagnetische Wechselwirkung vor. Forschungsgebiete der Atomkernphysik umfassen radioaktive Zerfälle und Stabilität von Atomkernen. Ziel ist dabei die Entwicklung von Kernmodellen, die diese Phänomene erklären können. Dabei wird aber auf eine detaillierte Ausarbeitung der starken Wechselwirkung wie in der Hadronenphysik verzichtet.

Zur Erforschung der Eigenschaften von Hadronen werden Teilchenbeschleuniger eingesetzt, wobei hier der Schwerpunkt nicht so sehr wie in der Teilchenphysik auf hohen Kollisionsenergien liegt. Stattdessen werden Target-Experimente durchgeführt, die zwar geringere Schwerpunktsenergien, aber sehr viel höhere Ereigniszahlen liefern. Allerdings werden auch Collider-Experimente mit Schwerionen vor allem eingesetzt, um Erkenntnisse über Hadronen zu gewinnen. In der Kernphysik werden zur Erzeugung von Transuranen schwere Atome zur Kollision gebracht, und radioaktive Strahlung wird mit einer Vielzahl experimenteller Aufbauten untersucht.

Atom- und Molekülphysik

Hauptartikel: Atomphysik und Molekülphysik

Atome bestehen aus dem Atomkern und meist mehreren Elektronen und stellen die nächste Komplexitätsstufe der Materie dar. Ziel der Atomphysik ist es unter anderem, die Linienspektren der Atome zu erklären, wozu eine genaue quantenmechanische Beschreibung der Wechselwirkungen der Elektronen der Atome notwendig ist. Da Moleküle aus mehreren Atomen aufgebaut sind, arbeitet die Molekülphysik mit ähnlichen Methoden, allerdings stellen insbesondere große Moleküle meist deutlich komplexere Systeme dar, was die Rechnungen sehr viel komplizierter und häufig den Einsatz von Computersimulationen erforderlich macht.

Die Atom- und Molekülphysik stehen über die Untersuchung der optischen Spektren von Atomen und Molekülen mit der Optik in enger Beziehung. So baut beispielsweise das Funktionsprinzip des Lasers, einer bedeutenden technischen Entwicklung, maßgeblich auf den Ergebnissen der Atomphysik auf. Da die Molekülphysik sich auch intensiv mit der Theorie der chemischen Bindungen befasst, sind in diesem Themengebiet Überschneidungen mit der Chemie vorhanden.

Ein wichtiger experimenteller Zugang besteht in der Einwirkung von Licht. So werden beispielsweise optische Spektren von Atomen und Molekülen mit ihren quantenmechanischen Eigenschaften in Verbindung gesetzt. Umgekehrt kann dann mit spektroskopischen Methoden die Zusammensetzung eines Stoffgemisches untersucht werden und anhand von Sternenlicht Aussagen über die Elemente in der Sternenatmosphäre getroffen werden. Andere Untersuchungsmethoden betrachten das Verhalten unter dem Einfluss von elektrischen und magnetischen Feldern. Beispiele sind die Massenspektroskopie oder die Paulfalle.

Kondensierte Materie und Fluiddynamik

Hauptartikel: Kondensierte Materie und Strömungslehre

Die Physik der kondensierten Materie und die Fluiddynamik sind in dieser Auflistung das Gebiet mit der größten thematischen Bandbreite, von der Festkörperphysik bis zur Plasmaphysik. All diesen Bereichen ist gemeinsam, dass sie sich mit makroskopischen Systemen aus sehr vielen Atomen, Molekülen oder Ionen befassen. Dementsprechend ist in allen Bereichen dieses Themengebiets die Thermodynamik ein wichtiger Teil des theoretischen Fundamentes. Je nach Problem kommen aber auch Quantentheorie und Relativitätstheorie zum Einsatz, um die Systeme zu beschreiben. Auch Computersimulationen sind ein fester Bestand der Forschung an solchen Vielteilchensystemen.

Aufgrund der thematischen Bandbreite existieren Überschneidungen mit nahezu allen anderen Gebieten der Physik, zum Beispiel mit der Optik in Form laseraktiver Medien oder nichtlinearer Optik, aber auch mit der Akustik, Atom-, Kern- und Teilchenphysik. Auch in der Astrophysik spielt die Fluiddynamik eine große Rolle bei der Erstellung von Modellen zur Entstehung und zum Aufbau von Sternen sowie bei der Modellierung vieler anderer Effekte. Viele Forschungsbereiche sind dabei sehr anwendungsorientiert, wie die Materialforschung, die Plasmaphysik oder die Erforschung der Hochtemperatursupraleiter.

Die Bandbreite der experimentellen Methoden in diesem Bereich der Physik ist sehr groß, sodass sich keine typischen Methoden für das ganze Gebiet angeben lassen. Die quantenmechanischen Effekte wie Supraleitung und Suprafluidität, die eine gewisse Bekanntheit erlangt haben, werden der Tieftemperaturphysik zugerechnet, die mit typischen Kühlungsmethoden einhergeht.

Astrophysik und Kosmologie

Hauptartikel: Astrophysik und Kosmologie

Astrophysik und Kosmologie sind interdisziplinäre Forschungsgebiete, die sich stark mit der Astronomie überschneiden. Nahezu alle anderen Themenbereiche der Physik gehen in die astrophysikalischen Modelle ein, um Prozesse auf verschiedenen Größenskalen zu modellieren. Ziel dieser Modelle ist es, astronomische Beobachtungen auf der Grundlage der bisher bekannten Physik zu erklären.

Die Kosmologie baut insbesondere auf den Grundlagen der allgemeinen Relativitätstheorie auf, allerdings sind im Rahmen der Quantenkosmologie auch die Quantentheorien sehr bedeutsam um die Entwicklung des Universums in sehr viel früheren Phasen zu erklären. Das derzeit (2009) am meisten vertretene kosmologische Standardmodell baut dabei maßgeblich auf den Theorien der Dunklen Materie und der Dunklen Energie auf. Weder dunkle Materie noch dunkle Energie konnte bisher direkt experimentell nachgewiesen werden, es existieren aber eine Vielzahl von Theorien, was genau diese Objekte sind.

Da in der Astrophysik nur in sehr beschränktem Ausmaß Experimente möglich sind, ist dieses Teilgebiet der Physik sehr stark auf die Beobachtung unbeeinflussbarer Phänomene angewiesen. Dabei kommen auch Erkenntnisse der Atomphysik und der Teilchenphysik und typische Messmethoden dieser Fachgebiete zur Anwendung, um Rückschlüsse auf astrophysikalische oder kosmologische Zusammenhänge zu ziehen. Beispielsweise geben die Spektren von Sternenlicht Auskunft über die Elementverteilung der Sternenatmosphäre, die Untersuchung der Höhenstrahlung erlaubt Rückschlüsse auf die kosmische Strahlung und Neutrinodetektoren messen nach einer Supernova einen erhöhten Neutrinostrom, der gleichzeitig mit dem Licht der Supernova beobachtet wird.

Interdisziplinäre Themenbereiche

Methoden der Physik finden in vielen Themengebieten Anwendung, die nicht zum Kernthemenbereich der Physik gehören. Einige dieser Anwendungen sind in den vorigen Kapiteln bereits angesprochen worden. Die folgende Aufzählung gibt einen kurzen Überblick über die wichtigsten interdisziplinären Themenbereiche.

  • Die Astrophysik wendet physikalische Methoden auf das Studium astronomischer Phänomene an.
  • In der Biophysik werden die physikalischen Gesetzmäßigkeiten untersucht, denen Lebewesen und ihre Wechselwirkung mit der Natur unterliegen.
  • Bei der physikalischen Chemie werden Methoden der Physik auf die Anschauungsobjekte der Chemie angewendet.
  • Die Geophysik nutzt physikalische Modelle und Methoden zur Erklärung geowissenschaftlicher Vorgänge und Fragestellungen.
  • Die Technische Physik befasst sich mit den technischen Anwendungen physikalischen Wissens. Wichtige Teilbereiche sind die Quantenelektronik und die Theorie der Quantencomputer.
  • Die Umweltphysik beschäftigt sich in ihrer Forschung vor allem mit den Bereichen Energie und Klima.
  • Soziophysik und Ökonophysik wenden physikalische und statistische Methoden auf gesellschaftliche, wirtschaftliche, kulturelle und politische Phänomene an.

Grenzen der physikalischen Erkenntnis

Der derzeitige Stand der Physik ist nach wie vor mit noch ungelösten Problemen konfrontiert. Zum einen handelt es sich dabei um den weniger grundsätzlichen Fall von Problemen, deren Lösung prinzipiell möglich, aber mit den derzeitigen mathematischen Möglichkeiten bestenfalls annäherbar ist. Zum anderen gibt es eine Reihe von Problemen, für die noch unklar ist, ob eine Lösung im Begriffsrahmen der heutigen Theorien überhaupt möglich sein wird. So ist es bislang nicht gelungen, eine vereinheitlichte Theorie zu formulieren, welche sowohl Phänomene beschreibt, die der elektroschwachen wie der starken Wechselwirkung unterliegen, wie auch solche, welche der Gravitation unterliegen. Erst bei einer solchen Vereinigung von Quantentheorie und Gravitationstheorie (allgemeiner Relativitätstheorie) könnten alle vier Grundkräfte einheitlich behandelt werden, sodass eine vereinheitlichte Theorie der Elementarteilchen resultierte.

Die bisherigen Kandidaten von Quantengravitationstheorien, Supersymmetrie und Supergravitations-, String- und M-Theorien versuchen, eine solche Vereinheitlichung zu erreichen. Überhaupt ist es ein praktisch leitendes Ziel heutiger Physiker, sämtliche Vorgänge der Natur durch eine möglichst geringe Anzahl von möglichst einfachen Naturgesetzen zu beschreiben. Diese sollen das Verhalten möglichst grundlegender Eigenschaften und Objekte (etwa Elementarteilchen) beschreiben, sodass höherstufige (emergente) Prozesse und Objekte auf diese Beschreibungsebene reduzierbar sind.

Ob dieses Ziel prinzipiell oder praktisch erreichbar ist, ist eigentlich nicht mehr Gegenstand der einzelwissenschaftlichen physikalischen Erkenntnisbemühung, ebenso wenig, wie es allgemeine Fragen darüber sind, welchen Gewissheitsgrad physikalische Erkenntnisse grundsätzlich erreichen können oder faktisch erreicht haben. Derartige Fragen sind Gegenstand der Epistemologie und Wissenschaftstheorie. Dabei werden ganz unterschiedliche Positionen verteidigt. Relativ unbestritten ist, dass naturwissenschaftliche Theoriebildungen in dem Sinne nur Hypothesen sind, dass man nicht mit Gewissheit wissen kann, ob es sich dabei um wahre und gerechtfertigte Auffassungen handelt. Man kann hier noch in spezifischerer Weise vorsichtig sein, indem man sich auf die Theorie- und Begriffsvermitteltheit aller empirischen Erkenntnisse beruft oder auf die Tatsache, dass der Mensch als erkennendes Subjekt ja unter den Gegenstandsbereich physikalischer Theorien fällt, aber nur als wirklich Außenstehender sicheres Wissen haben könnte. Denn für Beobachter, die mit ihrem Erkenntnisobjekt interagieren, bestehen prinzipielle Grenzen der Prognostizierbarkeit im Sinne einer Ununterscheidbarkeit des vorliegenden Zustandes – eine Grenze, die auch dann gelten würde,[3] wenn der Mensch alle Naturgesetze kennen würde und die Welt deterministisch wäre. Diese Grenze hat praktische Bedeutung bei deterministischen Prozessen, für welche geringe Änderungen des Anfangszustands zu großen Abweichungen in Folgezuständen führen – Prozesse, wie sie durch die Chaostheorie beschrieben werden. Aber nicht nur eine praktische Voraussagbarkeit ist in vielen Fällen nur begrenzt möglich, auch wird von einigen Wissenschaftstheoretikern eine Aussagefähigkeit physikalischer Modelle über die Realität überhaupt bestritten. Dies gilt in verschiedenen Ausarbeitungen eines sogenannten wissenschaftstheoretischen Antirealismus in unterschiedlichem Ausmaß: für unterschiedliche Typen physikalischer Begriffe wird eine reale Referenz bestritten oder für unwissbar gehalten.[4] Auch eine prinzipielle oder wahrscheinliche Zusammenführbarkeit einzelner Theorien wird von einigen Wissenschaftstheoretikern bestritten.[5]

Beziehung zu anderen Wissenschaften

Die Beziehungen zur Philosophie sind traditionell eng, hat sich doch die Physik aus der klassischen Philosophie entwickelt, ohne sich dabei jemals grundsätzlich in Gegensatz zu ihr zu stellen und waren nach heutigen Kategorien zahlreiche bedeutende Physiker zugleich wichtige Philosophen und umgekehrt. Gemäß der heutigen philosophischen Disziplinenunterscheidung ist die Physik insbesondere auf die Ontologie bezogen, welche die Grundstrukturen der Realität in möglichst allgemeinen Begriffen zu beschreiben versucht, darüber hinaus auf die Erkenntnistheorie, welche die Gütekriterien von Wissen überhaupt zu erfassen versucht, spezifischer noch auf die Wissenschaftstheorie, welche die allgemeinen Methoden wissenschaftlicher Erkenntnis zu bestimmen versucht und natürlich auf die Naturphilosophie bzw. Philosophie der Physik, die oftmals als Unterdisziplin der Ontologie oder Wissenschaftstheorie behandelt wird, jedenfalls aber spezifischer gerade auf die Einzelerkenntnisse der Physik bezogen arbeitet, deren Begriffssystem analysiert und ontologische Interpretationen physikalischer Theorien diskutiert.

Physik in der Gesellschaft

Logo des Jahres der Physik 2005

Da die Physik als die grundlegende Naturwissenschaft gilt, werden physikalisches Wissen und Denken bereits in der Schule meist im Rahmen eines eigenen Schulfaches unterrichtet. Im Rahmen des Schulsystems wird Physik in der Regel als Nebenfach ab Klassenstufe 5–7 unterrichtet, und wird in der Oberstufe oft auch als Leistungskurs geführt.

Siehe auch: Physikunterricht

Literatur

Lehrbücher
Philosophie der Physik

. (Begleitmaterial)

    • Thomas Brody: The Philosophy Behind Physics. Springer, 1993
    • Jeremy Butterfield, John Earman, Dov M. Gabbay, Paul Thagard, John Woods (Hrs): Handbook of the Philosophy of Physics. Elsevier, 2007, ISBN 0-444-51560-7 Standardwerk
    • Michael Drieschner: Moderne Naturphilosophie. Eine Einführung. Mentis, Paderborn 2002, ISBN 3-89785-260-8
    • Michael Esfeld: Einführung in die Naturphilosophie. WBG, Darmstadt 2002, ISBN 3-534-15461-4
    • M. Lange: An Introduction to the Philosophy of Physics. Blackwell, London 2002 Besonders zu den Themen Lokalität, Felder, Energie, Masse; etwas spezieller, da nicht nur überblicksweise Darstellung, sondern auch Argumentation für eigene Position.
    • L. Sklar: Philosophy of Physics. OUP, Oxford 1992. Kurzer Abriss von Grundlagen zu Raumzeit, Wahrscheinlichkeit, Quanten

 

Biochemie

Wechseln zu: Navigation, Suche
Dieser Artikel behandelt das naturwissenschaftliche Fachgebiet Biochemie; zur gleichnamigen alternativmedizinischen Heilmethode siehe Schüßler-Salze.

Die Biochemie, früher auch Physiologische Chemie, (griechisch βιοχημεία biochēmeia, „die Chemie des Lebens“) genannt, ist die Lehre von chemischen Vorgängen, dem Stoffwechsel in Lebewesen. Sie bearbeitet den Grenz- bzw. Überschneidungsbereich zwischen Chemie, Biologie und Medizin.

Gegenstand

Struktur von Hämoglobin – einem weit verbreiteten Biomolekül

Die Biochemie beschäftigt sich mit:

  • der Untersuchung biomolekularer Strukturen: wie sind die Biomoleküle aufgebaut, wie ist der molekulare Aufbau des Organismus der Lebewesen, wie werden die molekularen Bausteine bereitgestellt und wie wechselwirken sie miteinander?
  • der Untersuchung des Stoffwechsels: welche Stoffe werden von Lebewesen wie umgesetzt, welche bioenergetischen Voraussetzungen sind nötig, welche Biokatalysatoren sind beteiligt, wie verlaufen die jeweiligen Mechanismen der Stoffumsätze und wie wird der Stoffwechsel gesteuert?
  • der Untersuchung des Informationsaustauschs innerhalb eines Organismus und zwischen Organismen: wie wird Information gespeichert, abgerufen und weitergeleitet, wie werden verschiedene Systeme innerhalb einer Zelle, zwischen verschiedenen Zellen und zwischen Organismen koordiniert?

Im Zuge dessen konzentrieren sich die Betrachtungen auf die Stoffgruppen der Nukleinsäuren, Proteine, Lipide und Kohlenhydrate sowie deren Derivate, welche im Allgemeinen als Biomoleküle bezeichnet werden. Der überwiegende Teil der biochemisch wichtigen Vorgänge spielen sich in Lebewesen und somit in wässrigem Milieu ab.

Methoden

In der Biochemie wird eine Vielzahl von Methoden aus verschiedenen Gebieten angewandt. Die klassische Biochemie bedient sich vor allem der analytischen Chemie, organischen Chemie, physikalischen Chemie und der Physik. Wichtige Techniken sind dabei Zentrifugation, Chromatographie, Elektrophorese, Spektroskopie, Isotopentechniken, Kristallisation, potentiometrische, elektrometrische, polarographische und manometrische Techniken, in den letzten Jahrzehnten kamen dazu auch molekularbiologische Methoden und Methoden aus der Informatik, der Mikrobiologie und anderen Fächern. Hinzu kommt in der modernen Biochemie stets die quantitative Auswertung der Ergebnisse mit mathematischen Methoden und die Bildung von formalen Theorien mit Hilfe der Mathematik.

Geschichte

Die Biochemie entwickelte sich seit Anfang des 19. Jahrhunderts aus der Biologie, Chemie und der medizinischen Physiologie und war von Anfang an eng mit der Genetik, Zellbiologie und Molekularbiologie verknüpft. Diese Wissenschaften arbeiten nach wie vor Hand in Hand und ihre Grenzen überlappen einander stark.

Zum ersten Mal verwendet wurde der Begriff Biochemie, als Vinzenz Kletzinsky (1826–1882) im Jahre 1858 sein "Compendium der Biochemie" in Wien drucken ließ.

Als einer der ersten Deutschen beschäftigte sich Anfang des 19. Jahrhunderts Georg Carl Ludwig Sigwart in Tübingen mit der Biochemie. Er arbeitete unter anderem über Säureindikatoren bei Herbstzeitlosen, Analysen von Gallen- und Harnsteinen und die Proteine des Blutserums. In Frankreich entdeckte Anselme Payen 1833 mit der Amylase (damals als Diastase bezeichnet) das erste Enzym. Ab 1845 isolierte Julius Eugen Schlossberger in seinem Laboratorium in der Küche von Schloss Hohentübingen Kreatin aus Muskelfleisch des Alligators, analysierte rachitische Knochen, den Iodgehalt von Korallen und das Kupfer im Hämocyanin. Sein Nachfolger Felix Hoppe-Seyler befasste sich von 1861 bis 1872 am selben Ort u. a. mit Muskelkontraktion, Totenstarre, Milchsäure aus Glykogen, Oxidations- und Reduktionsfermenten und Hämoglobin. Unter seiner Leitung entdeckte Friedrich Miescher 1869 das Nuklein. Eduard Buchner, von 1896 bis 1898 außerordentlicher Professor der Chemie in Tübingen, entdeckte 1896 die zellfreie Gärung und wurde dafür 1907 mit dem Nobelpreis geehrt. Sir Frederick Gowland Hopkins, ein Pionier der Biochemie in Großbritannien, entdeckte 1912 die Vitamine und essentiellen Aminosäuren und wurde dafür 1929 mit dem Nobelpreis ausgezeichnet. Im Jahre 1926 entdeckte Otto Warburg das Atmungsferment Cytochromoxidase, wofür er 1931 den Nobelpreis erhielt.

Meilensteine

Der Citratzyklus - ein biochemischer Stoffwechselweg

Forschungsinstitute im deutschen Sprachraum

(Die Liste ist unvollständig)

Die Biochemie ist zum festen Bestandteil der hochschulischen Ausbildung vor allem von Medizinern und Biologen, aber auch anderen Naturwissenschaftlern geworden, so finden sich Institute für Biochemie an vielen deutschen Hochschulen.

Gliederung

Je nach Betrachtungswinkel wird die Biochemie in Bezug auf menschliche Erkrankungen als medizinische Biochemie, in Bezug auf Ökosysteme ökologische Biochemie, in Bezug auf Pflanzen als Pflanzenbiochemie, in Bezug auf das Immunsystem als Immunbiochemie und in Bezug auf das Nervensystem als Neurochemie bezeichnet. Ebenso wird die Biochemie nach Stoffgruppen eingeteilt, z. B. Proteinchemie, Nukleinsäurebiochemie, Kohlenhydratbiochemie und Lipidbiochemie. Small molecules werden von der Naturstoffchemie behandelt. Die Enzymologie und die Signaltransduktion stellen Sonderbereiche der Biochemie dar. Die Biophysikalische Chemie untersucht Biomoleküle und Lebewesen mit Methoden der physikalischen Chemie

Biochemiker

Studium

2008 gab es in Deutschland Studiengänge der Biochemie mit den Abschlüssen Diplom, Bachelor und Master. Die Diplomstudiengänge werden schrittweise durch konsekutive Bachelor- und Masterstudiengänge ersetzt:

  • Der Diplomstudiengang Biochemie hat eine Regelstudienzeit von 9 bis 10 Semestern, eine Höchststudiendauer von 13 bis 14 Semestern und führt zum berufsqualifizierenden Abschluss Diplom-Biochemiker/in.
  • Der Bachelorstudiengang Biochemie hat eine Regelstudienzeit von 6 bis 8 Semestern und führt zum berufsqualifizierenden Abschluss Bachelor of Science – Biochemie.
  • Der Masterstudiengang Biochemie hat eine Regelstudienzeit von 3 bis 4 Semestern und führt zum berufsqualifizierenden Abschluss Master of Science – Biochemie.

Neben dem reinen Biochemie-Studium besteht die Möglichkeit, die Fachrichtungen Chemie oder Biologie zu studieren und während des Studiums den Fächerkanon Biochemie zu vertiefen. Eine Spezialisierung erfolgt üblicherweise durch Biochemie als Wahlpflichtfach bzw. Hauptfach sowie die Anfertigung einer Diplom-, Bachelor- oder Masterarbeit im Bereich der Biochemie. Diese Variante bietet den Vorteil, dass sich Studienanfänger nicht direkt für ein reines Biochemie-Studium entscheiden müssen. Vielmehr haben sie die Möglichkeit, im Grundstudium verschiedene Fächer kennenzulernen, um sich dann während des Hauptstudiums zu spezialisieren, z. B. in Biochemie. Die Möglichkeit dazu ist an vielen Universitäten gegeben und die Regelstudienzeiten entsprechen denen der reinen Biochemie-Studiengänge. Bei den Bachelor- und Masterstudiengängen hat sich inzwischen im Bereich der Biowissenschaften eine Vielfalt von Studiengängen mit unterschiedlichen Namen und Spezialisierungen etabliert. Ihnen ist gemeinsam, dass sie besonderen Wert auf die molekularen Grundlagen legen und einen hohen Praxisanteil in der Ausbildung haben (siehe Weblinks).

Der Facharzt für Biochemie

Es besteht auch die Möglichkeit, nach einem absolvierten Medizinstudium in Deutschland als Facharzt für Biochemie tätig zu werden. Hierfür bedarf es einer vierjährigen Weiterbildungszeit. Auf diese anrechenbar ist

Am 31. Dezember 2010 waren 102 Fachärzte für Biochemie registriert, von denen einer niedergelassen war. 52 übten keine ärztliche Tätigkeit aus. Die Zahl der ärztlich tätigen registrierten Fachärzte für Biochemie reduzierte sich innerhalb des Jahrzehntes 2000-2010 um fast 50 %.

Siehe auch

 Portal: Biochemie – Übersicht zu Wikipedia-Inhalten zum Thema Biochemie

Literatur

Lehrbücher

  • Donald Voet et al.: Lehrbuch der Biochemie. Wiley-VCH, 2002, ISBN 3-527-30519-X
  • Jeremy M. Berg, Lubert Stryer et al.: Biochemie. 5. Auflage. Spektrum Akademischer Verlag, 2003, ISBN 3-8274-1303-6, Online Version, Volltextsuche (englisch)
  • Lehninger, Nelson, Cox: Lehninger Biochemie. 3. Auflage. Springer-Lehrbuch, Berlin 2001, ISBN 3-540-41813-X
  • David L. Nelson, Michael M. Cox: Lehninger Principles of Biochemistry. 4th Edition. Palgrave Macmillan, 2004, ISBN 0-7167-4339-6 (englisch)
  • Georg Löffler, Petro E. Petrides, Peter C. Heinrich: Biochemie und Pathobiochemie. 8. Auflage. Springer-Lehrbuch, 2007, ISBN 978-3-540-32680-9
  • Manfred Schartl, Manfred Gessler, Arnold von Eckardstein: Biochemie und Molekularbiologie des Menschen. 1. Auflage. Elsevier: München 2009. ISBN 978-3-437-43690-1
  • Philipp Christen, Rolf Jaussi: Biochemie. Eine Einführung mit 40 Lerneinheiten. Springer-Verlag, 2005, ISBN 3-540-21164-0
  • Florian Horn et al.: Biochemie des Menschen – Das Lehrbuch für das Medizinstudium. 3., vollst. überarb. u. erw. Aufl. Thieme, Stuttgart, 2005, ISBN 3-13-130883-4
  • Graeme K. Hunter: Vital Forces. The discovery of the molecular basis of life. Academic Press, London 2000, ISBN 0-12-361811-8 (englisch)
  • Joachim Rassow, Karin Hauser, Roland Netzker, Rainer Deutzmann: Biochemie. Georg Thieme Verlag, 2006, ISBN 3-13-125351-7

Biochemische Wörterbücher

  • Peter Reuter: Taschenwörterbuch der Biochemie. Deutsch - Englisch/Englisch - Deutsch, Birkhäuser Verlag, Basel/Boston/Berlin 2000, ISBN 3-7643-6197-2

Lehrmaterialien im Internet

Biochemische Fachzeitschriften

 

Organismus

Wechseln zu: Navigation, Suche

Der Ausdruck Organismus ist mehrdeutig[1]

  • Er steht in der Biologie und Medizin
für ein einzelnes Lebewesen oder
für die Gesamtheit, für das konkrete System von Organen eines Lebewesens.
  • Allgemein für ein Ganzes im Sinne eines Systems, dessen Teile als „Organe“ zusammenwirken.

In der Wissenschaftssprache der Biologie dient der Ausdruck Organismus zunächst als 'sortaler Term' zur Bezeichnung von Lebewesen. In dieser Bedeutung ist ein Organismus ein individualisiertes Naturwesen, welches die Erscheinungen des Lebens, vor allem Stoffwechsel, Wachstum und Fortpflanzung, zeigt. Daneben hat Begriff Organismus theoretische Bedeutung: Er bezieht sich dann auf ein 'epistemisches Modell' zur Erklärung der Lebenserscheinungen. Im Mittelpunkt dieses Modells steht die Erklärung der Lebensfunktionen durch die (dezentrale) Organisation der Teile eines individuellen Systems.[2]

Im weitesten Sinne werden als Organismen genannt „Zellen, Organe, Organsysteme, komplexe elektronische Netze, Tiere, Personen, Familien, wirtschaftliche oder politische Systeme, Kulturen, Nationen“[3] oder auch Institutionen oder historische Entwicklungen[4].

Obwohl Einzeller keine Organe besitzen, kann man sie als hierarchisch gegliederte, zielgerichtete Organismen auffassen. Hyphen- oder Myzelpilze bilden dagegen ein einfaches Geflecht. Viren und Viroide zählen nicht zu den Organismen, da sie weder einen eigenen Metabolismus noch die Fähigkeit zur Selbstorganisation besitzen.

Nach Ludwig von Bertalanffy ist ein lebender Organismus ein Stufenbau offener Systeme, der sich auf Grund seiner Systembedingungen im Wechsel der Bestandteile selbst erhält. Die Erhaltung der Bestandteile ist dabei nur durch ihre Beziehung auf das Ganze möglich.

Die Bezeichnung Organismus wird allgemein für Systeme gebraucht, die als ganzheitlich, hierarchisch gegliedert und zielgerichtet gekennzeichnet werden sollen.

Jeder Teil eines Organismus ist immer gleichzeitig Mittel und Zweck aller anderen (Immanuel Kant). Weil ein Organismus zielgerichtet ist, also von einem Zweck (Teleologie) bestimmt wird, ist der Organismus selbst allerdings mehr als die Summe seiner Teile (Aristoteles).

In der Regel werden Organismus und Mechanismus als Gegensatzpaare betrachtet, wobei der Organismus ein labiles, der Mechanismus dagegen ein stabiles System darstellt. Ein Ziel bei der theoretischen Betrachtung von Organismen ist deshalb immer die Vereinbarung von mechanisch-kausalen und organisch-teleologischen Prozessen.

Begriffsgeschichte

"Ende des 17. Jahrhunderts ist es zuerst G.E. Stahl, der die Bezeichunung Organismus im biologischen Zusammenhang verwendet." [5] Zu dieser Zeit beginnt man,Leben‘ naturwissenschaftlich als eigene Kategorie von Seinsweise mit eigenen Regulationsprinzipien zu konzipieren. Diese Auffassung begünstigte die Entstehung der Biologie bzw. der Lebenswissenschaften. Der Körper eines Lebewesens wird zu dieser Zeit weitestgehend im Anschluss an Descartes’ Trennung von Materie und Geist als ein reiner Mechanismus begriffen – mit dem Unterschied, dass dieser natürliche Mechanismus im Gegensatz zum künstlichen als ein bis ins kleinste Glied vollkommen funktionsfähiger Automat aufgefasst wurde, der defekte Teile selbständig ersetzt. Der Terminus ,Organismus‘ wird bei Stahl als begriffliche Ableitung und Gegenüberstellung zum ,Mechanismus‘ verstanden.[6]

Siehe auch

Weiterführendes und Einzelnachweise

Literatur

  • Michael Ewers: Philosophie des Organismus in teleologischer und dialektischer Sicht. Ein ideengeschichtlicher Grundriss, Münster 1986
  • Georg Toepfer: Organismus. In: Georg Toepfer (Hg.): Historisches Wörterbuch der Biologie. Geschichte und Theorie der biologischen Grundbegriffe. Metzler, Stuttgart: Band 2, S. 777-842.
  • Wilhelm Weischedel (Hrsg.): Immanuel Kant: Kritik der Urteilskraft. Werkausgabe Band X, Suhrkamp, Frankfurt am Main 2005, hier besonders § 65 Dinge, als Naturzwecke, sind organisierte Wesen (§ 65 bei Korpora.org)

Einzelnachweise

  1. Hochspringen Vgl. auch Bibliographisches Institut: Duden online. (2013): „Organismus“ [1]
  2. Hochspringen Siehe zum gesamten Absatz: Toepfer, Georg 2013: Organismus [Version 1.0]. In: Glossar naturphilosophischer Grundbegriffe. [2].
  3. Hochspringen So Paul Watzlawick; Janet H. Beavin; Don D. Jackson: Menschliche Kommunikation: Formen, Störungen, Paradoxien. - 12., unveränd. Aufl.. - Huber, Bern [u.a.], 2011, S. 24
  4. Hochspringen Anton Hügli; Poul Lübcke (Hrsg.): Philosophielexikon. - Systhema-Verlag, München (CD-ROM) 1996: Organismus.
  5. Hochspringen Georg Toepfer: Organismus. In: Georg Toepfer (Hg.): Historisches Wörterbuch der Biologie. Geschichte und Theorie der biologischen Grundbegriffe. Metzler, Stuttgart: Band 2, S. 777-842, hier S. 777.
  6. Hochspringen Theodor Ballauff: Organismus I. (Biologie), veröffentlicht in: Joachim Ritter und Karlfried Gründer (Hrsg.): Historisches Wörterbuch der Philosophie, Band 6, Darmstadt 1984, Sp. 1330–1336

 

toffwechsel

Wechseln zu: Navigation, Suche

Der Stoffwechsel oder der Metabolismus (griechisch μεταβολισμός, metabolismós „Stoffwechsel“, mit lateinischer Endung versehen) ist die Gesamtheit der chemischen Prozesse im Organismus, die als Folge zur Umwandlung von Stoffen führt und steht damit für die Aufnahme, den Transport und die chemische Umwandlung von Stoffen in einem Organismus sowie die Abgabe von Stoffwechselendprodukten an die Umgebung. Alle beteiligten Stoffe werden als Metaboliten bezeichnet.

Diese biochemischen Vorgänge (zum Beispiel innere und äußere Atmung, Transportvorgänge, Ernährung) dienen dem Aufbau und der Erhaltung der Körpersubstanz (Baustoffwechsel) sowie der Energiegewinnung (Energiestoffwechsel) und damit der Aufrechterhaltung der Körperfunktionen. Wesentlich für den Stoffwechsel sind Enzyme, die chemische Reaktionen katalysieren.

Der gesamte Stoffwechsel kann eingeteilt werden in katabole Reaktionen, welche, durch den Abbau von chemisch komplexen Nahrungsstoffen zu einfacheren Stoffen, Energie liefern, und anabole Reaktionen, welche unter Energieverbrauch körpereigene Stoffe aus einfachen Bausteinen aufbauen. Der gesamte Stoffwechsel ist jedoch ein komplexes Netzwerk von einzelnen Reaktionen, die zusammen Stoffwechselwege bilden. Diese können linear (z.B. Glycolyse) oder zyklisch (z.B. Citratzyklus) sein. Die meisten Stoffwechselwege sind amphibol: Sie laufen in verschiedenen Schritten katabol wie anabol ab. Auch wenn Stoffwechselwege in vielen Einzelschritten reversibel sind, sind sie als Gesamtes immer irreversibel, da mindestens ein Reaktionsschritt nur in anabole oder katabole Richtung verläuft.

Werden von außen aufgenommene, fremde Stoffe umgesetzt, so spricht man auch von Fremdstoffmetabolismus.

Die Erforschung des Stoffwechsels erfolgt vor allem mit Methoden der Physiologie und Biochemie.

Den Stoffwechsel kann man auch als Austausch von freier Energie oder Ordnung verstehen. Lebewesen erhöhen in sich die Ordnung (Abnahme der Entropie) auf Kosten der Erhöhung von Unordnung, also von Entropie, in der Umgebung. Man hat Lebewesen deshalb auch als Negentropen bezeichnet.

Erwin Schrödinger hat darauf hingewiesen, dass der Ausdruck Stoffwechsel leicht missverstanden werden kann. Man könne meinen, es handele sich um einen Austausch von Stoffen („Jedes Atom Stickstoff, Sauerstoff, Schwefel usw. ist ebenso viel wert wie jedes andere seiner Art; was ließe sich durch ihren Austausch gewinnen?“[1]). Tatsächlich ist aber eine chemische Veränderung von Stoffen gemeint.

Reaktionstypen

Enzymatisch katalysierte Reaktionen

Nach dem IUPAC/IUBMB Enzym-Klassifikationssystem gibt es sechs Hauptgruppen von Enzymreaktionen.[2] Dadurch kann auch der Stoffwechsel, in dem Reaktionen durch Enzyme katalysiert werden, ebenfalls in sechs Gruppen von Reaktionen unterteilt werden, nämlich in Redoxreaktionen, Gruppenübertragungsreaktionen, Hydrolysereaktionen, Lyase-Reaktionen (Addition, Hydratisierung), Isomerisierungsreaktionen und Ligationsreaktionen.

Hauptartikel: Enzym#Klassifikation

Transport

Der Transport von Stoffen durch Transportproteine kann innerhalb von Zellkompartimenten, außerhalb von Zellen, oder über Kompartimentgrenzen (Biomembrane) hinweg geschehen. Es kann sich um reine Diffusionsprozesse, erleichterte Diffusion oder aktiven, ATP verbrauchenden Membrantransport handeln.

Mit der Transporter Classification Database (TCDB) steht eine von der IUBMB sanktionierte Klassifikation der Transportproteine zur Verfügung, die sich zusätzlich zur Funktion an der Abstammung der Proteine orientiert. Bei dieser Definition von Transport werden allerdings alle Proteine, die Stoffe zeitweilig nur binden und in dieser Zeit selbst transportiert werden (beispielsweise mit dem Blutkreislauf), nicht erfasst. Die Hauptgruppen in der TCDB sind Porine und Ionenkanäle, potenzialgetriebene Transporter, primär aktive Transporter, Phosphotransferasen, Transmembran-Elektronencarrier, Hilfstransporter und andere.

Hauptartikel: Transport (Biologie)

Stoffwechselvorgänge

Einteilung nach der Funktion der Stoffwechselreaktion im Organismus

Einteilung nach der Veränderung von Molekülen

Beispiele für Stoffwechselvorgänge

In der Photosynthese wandeln spezifische Stoffwechselvorgänge (in der Regel die des Calvin-Zyklus) unter Verwendung der Energie des Lichts Kohlenstoffdioxid (bei Landpflanzen aus der Luft stammend), Wasser und andere Ausgangsstoffe in Stoffe um, die entweder sofort dem weiteren Aufbau und Wachstum des Organismus dienen oder gespeichert werden, zum Beispiel Kohlenhydrate. Diese Reservestoffe können später im Baustoffwechsel oder im Energiestoffwechsel verarbeitet werden.

Tiere verstoffwechseln (metabolisieren) bei ihrer Verdauung andere Organismen oder deren Speicherstoffe (etwa Kohlenhydrate, Proteine oder Fette).

Siehe auch

Einzelnachweise

  1. Hochspringen Erwin Schrödinger: Was ist Leben - Die lebende Zelle mit den Augen des Physikers betrachtet. Deutschsprachige Ausgabe der englischsprachigen Originalausgabe What is life? von 1944, 5. Auflage. Piper Verlag, München 2001, ISBN 3-492-21134-8, S. 125.
  2. Hochspringen IUPAC Enzymnomenklaturempfehlung: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse., Stand: 24. Mai 2013, abgerufen am 26. Mai 2013.

Motorik

Wechseln zu: Navigation, Suche
Dieser Artikel behandelt den Begriff „Motorik“ allgemein, zum gleichnamigen Rhythmus siehe Motorik (Musik).
assyrischer König Tukulti-Ninurta I. in zwei Bewegungsstadien, 13. Jh. v. Chr., gilt als früheste Darstellung von Bewegung

Motorik (von lat. motor, ,Beweger‘, abgeleitet von movere, ,bewegen‘, ,antreiben‘[1]; und griech. motorikè téchne, ,Bewegungstechnik‘, ,Bewegungsfertigkeit‘, ,Bewegungskunst‘, ,Bewegungswissenschaft‘, ,Bewegungslehre‘[2]) bezeichnet

Anwendungsfelder

Entsprechend seiner Mehrdeutigkeit nimmt der Motorikbegriff in verschiedenen Anwendungsbereichen eine unterschiedliche Bedeutung an, die sich teilweise vom ursprünglichen Wortsinn entfernt. Im Wissenschaftsbereich wurden dazu auch Nachbardisziplinen und verwandte Begriffe geboren wie beispielsweise die Motologie oder die (Angewandte) Kinesiologie, die mit ihrer Begriffswahl ihre Eigenständigkeit neben der Bewegungs- bzw. Motorikwissenschaft dokumentieren:

  • Für die Sportwissenschaft ist die Motorik ein wesentlicher Teil der Bewegungslehre.[3] Die Disziplin Motorikwissenschaft befasst sich vorrangig mit der Sportmotorik, aber auch mit der Alltagsmotorik und der Arbeitsmotorik im Hinblick auf das Lernen, die Trainierbarkeit und den Ausdruckscharakter von Bewegungen.
  • Die Arbeitswissenschaft[4] legt ihr Augenmerk auf die berufsspezifischen Anforderungen an die Bewegungsabläufe. Ihr Schwerpunkt ist die Berufs- oder Arbeitsmotorik. Bewegungsstudien, etwa mittels Lichtspurverfahren, geben Auskunft über Bewegungsökonomie und Bewegungseffizienz, über motorische Veranlagung und Leistungserwartungen.
  • Die Physiologie[5] versteht unter Motorik willkürlich erzeugte Bewegungsabläufe des Körpers, die, von spezifischen Gehirnzentren gesteuert, über das nervöse Reizleitungssystem durch den Muskelapparat realisiert werden.
  • In der Ausdruckskunst (Ballett, Ausdrucksgymnastik, Ausdruckstanz, Pantomime) wird der Begriff als Bezeichnung für bestimmte Bewegungstechniken und für Bewegungskunst verwendet.

Unterbegriffe/Begriffsfeld

  • Alltagsmotorik kennzeichnet das Bewegungsrepertoire des täglichen Lebens.
  • Berufs- oder Arbeitsmotorik beschreibt das spezifische Bewegungsrepertoire des körperlich arbeitenden Menschen (Arbeiter, Handwerker, Krankengymnastin, Artist).
  • Sportmotorik erfasst begrifflich die komplexen und dynamisch anspruchsvollen Bewegungsabläufe im Sportbereich (Stabhochsprung, Eiskunstlauf, Gerätturnen).
  • Ausdruckmotorik ist auf Ästhetik und Präsentation der Persönlichkeit in den Bewegungsabläufen ausgerichtet.
  • Sportmotorik zielt auf die Optimierung von Bewegungsökonomie und Bewegungseffizienz (Wettkampf, Höchstleistung).
  • Grobmotorik sind die noch unfertigen Bewegungsabläufe in einer ersten Aneignungsphase.
  • Feinmotorik kennzeichnet Bewegungsabläufe in fortgeschrittenen oder ausgereiften Lernstadien.
  • Großmotorik umfasst die großräumigen Bewegungen (wie bei der Gewandtheit), an denen auch eine größere Anzahl Bewegungsorgane beteiligt ist.
  • Kleinmotorik meint die kleinräumigen Bewegungen (z.B. Handfertigkeit, Geschicklichkeit), bei denen nur ein kleiner Teil des Bewegungsapparats aktiv wird.
  • Lokomotorik betrifft den ortsverändernden Bewegungsapparat (Gehen, Laufen, Schwimmen) im Gegensatz zu den lageverändernden Bewegungen.
  • Vasomotorik nennt man das aktive Zusammenspiel von Nerven und Muskulatur bei der Gefäßerweiterung (Vasodilatation)
  • Sprechmotorik bezieht sich auf die anatomischen und physiologischen Möglichkeiten des Artikulierens eines Menschen über seine Sprachorgane.
  • Motoriker sind Menschen, in deren Verhalten das Bewegungsleben eine wichtige Rolle spielt.
  • Psychomotorik - sie beschäftigt sich mit den psychosozialen Voraussetzungen und Konsequenzen der Motorik; u. a. auch mit den Konsequenzen der Motorik und mangelnder Bewegungsfähigkeit für die psychische und soziale Entwicklung des Menschen (siehe Entwicklungspsychologie)

Beurteilung der Motorik

Die Motorik zeigt sich durch zahlreiche Komponenten bestimmt. Deren Funktionstüchtigkeit und Zusammenspiel macht ihre Qualität aus, vor allem das der konditionellen Grundeigenschaften, der koordinativen Fähigkeiten und der persönlichen Ausstrahlung.

Die meisten der Komponenten sind bereits erforscht und über spezielle Experimentalverfahren objektiv erfassbar. Sie lassen z. B. Rückschlüsse auf die motorische Veranlagung, den motorischen Entwicklungsstand, geschlechtsspezifische Unterschiede, das Ausdrucksvermögen oder den motorischen Lernfortschritt zu. Es gibt eine große Anzahl mehr oder weniger brauchbarer, vom Anwender kritisch zu hinterfragender motorischer Testangebote zu den Teilbereichen Grundeigenschaften (Kraft, Schnelligkeit, Ausdauer etc.), zu den koordinativen Grundfähigkeiten (Kopplungsfähigkeit, Reaktionsvermögen, Antizipationstalent etc.) oder zu den motorischen Anforderungen einzelner Sportbereiche (der Leichtathletik, der Mannschaftsspiele oder des Wintersports), also zum allgemeinen wie sportartspezifischen Motorikbestand.[6] Dabei kommt der Komponente Bewegungskoordination wegen ihrer hohen Aussagekraft über den Gesamtkomplex Motorik eine besondere Bedeutung zu.[7][8]

In der Neurologie lassen sich durch Analyse von Bewegungsabläufen und Reflexen Störungen der Muskulatur und/oder des Nervensystems nachweisen.

Spezialgebiete der Motorikwissenschaft

Die Sensomotorik (auch Sensumotorik) interessiert sich für die Zusammenhänge von Sinneseindrücken und Muskeltätigkeit. Sie untersucht etwa die Komplexverbindungen von visuellen und taktilen Wahrnehmungen, nervalen Reiztransporten und motorischen Vorgängen. Es geht um spezifische Steuerungs- und Regelungssysteme. Die Methoden sind der Kybernetik ab gewonnen.[9]

Die Psychomotorik macht die wechselseitigen Beziehungen von geistig-seelischer Verfassung und Befindlichkeiten des Körpers zu ihrem Forschungsthema. Sie befasst sich mit den für die Persönlichkeit charakteristischen Ausdrucksformen wie Sprechmodus, Gestik, Mimik, Körperhaltung, Gehweise und arbeitet entsprechende Typologien heraus.[10][11]

Die Motologie ist der jüngste Zweig der Motorikwissenschaft. Sie löste sich als selbstständiger Arbeitsbereich aus der Psychomotorik und wendet sich besonders auffälligen Kindern mit Lern- und Verhaltensstörungen zu (Hyperaktivität, Labilität). Als Unterformen wurden die Motodiagnostik, die Motopädagogik oder die Mototherapie kreiert.[12]

Siehe auch

Literatur

  • J. Asendorpf: Psychologie und Persönlichkeit. Berlin 1996
  • G.E. Benseler: Griechisch-Deutsches Schulwörterbuch. Leipzig und Berlin. 12. Auflage 1904
  • K. Bös: Handbuch sportmotorischer Tests. Göttingen 1987. 2. Auflage 2001
  • K. Fischer: Einführung in die Psychomotorik. München 2003
  • E.J. Kiphard: Motopädagogik – Psychomotorische Entwicklungsförderung. Dortmund 2001
  • E.J. Kiphard /F. Schilling: Körperkoordinationstest für Kinder (KTK). Göttingen 2007
  • H. de Marées: Sportphysiologie. Köln (Sportverlag) 9. Auflage 2003
  • H. Menge: Enzyklopädisches Wörterbuch der lateinischen und deutschen Sprache mit besonderer Berücksichtigung der Etymologie. Berlin (Langenscheidt) 7. Auflage 1950.
  • K. Meinel / G. Schnabel: Bewegungslehre – Sportmotorik. München (Südwest) 11. Auflage 2007
  • K. Roth /K. Willimczik: Bewegungswissenschaft. Reinbek (Rowohlt) 1999
  • C.M. Schlick u.a. (Hrsg.): Arbeitswissenschaft. Berlin 3. Auflage 2009
  • D. Ungerer: Zur Theorie des sensomotorischen Lernens. Schorndorf 1971
  • S. A. Warwitz: Der Wiener Koordinationsparcours (WKP). In: Ders.: Das sportwissenschaftliche Experiment. Planung-Durchführung-Auswertung-Deutung. Schorndorf (Hofmann) 1976. S. 48-62
  • D. Wick (Hrsg.) Biomechanik im Sport - Lehrbuch der biomechanischen Grundlagen sportlicher Bewegungen, Balingen (Spitta) 2. Auflage 2009

Einzelnachweise

  1. Hochspringen H. Menge: Enzyklopädisches Wörterbuch der lateinischen und deutschen Sprache mit besonderer Berücksichtigung der Etymologie. 7. Auflage, Langenscheidt, Berlin 1950, S. 485 f.
  2. Hochspringen G. E. Benseler: Griechisch-Deutsches Schulwörterbuch. 12. Auflage, Leipzig/Berlin 1904. S. 886 f.
  3. Hochspringen K. Meinel / G. Schnabel: Bewegungslehre – Sportmotorik. München (Südwest) 11. Auflage 2007
  4. Hochspringen C.M. Schlick u.a. (Hrsg.): Arbeitswissenschaft. Berlin 3. Auflage 2009
  5. Hochspringen H. de Marées: Sportphysiologie. Köln (Sportverlag) 9. Auflage 2003
  6. Hochspringen K. Bös: Handbuch sportmotorischer Tests. Göttingen 1987
  7. Hochspringen S.A. Warwitz: Der Wiener Koordinationsparcours (WKP). In: Ders.: Das sportwissenschaftliche Experiment. Planung-Durchführung-Auswertung-Deutung. Schorndorf 1976. S. 48-62
  8. Hochspringen E.J. Kiphard /F. Schilling: Körperkoordinationstest für Kinder (KTK). Göttingen 2007
  9. Hochspringen D. Ungerer: Zur Theorie des sensomotorischen Lernens. Schorndorf 1971
  10. Hochspringen K. Fischer: Einführung in die Psychomotorik. München 2003
  11. Hochspringen J. Asendorpf: Psychologie und Persönlichkeit. Berlin 1996
  12. Hochspringen E.J. Kiphard: Motopädagogik – Psychomotorische Entwicklungsförderung. Dortmund 2001